What is Investigating Exponentielle et logarithme?

AI Summary

Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.

Get started for free
  • Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 24.11.2022.

    Last updated: 24.11.2022.

L'exponentielle et le logarithme sont deux fonctions liées avec de nombreuses propriétés intéressantes. Elles sont très utiles dans la manipulation des nombres complexes, ainsi que dans la résolution des équations différentielles. De plus, ces fonctions permettent de modéliser diverses situations de la vie réelle, comme la croissance des populations et le comportement des marchés financiers.

Exponentielle et logarithme : définitions

La fonction exponentielle est la fonction notée \(exp(x)\) ou \(e^x\), où \(e\) est le nombre d'Euler ou la constante de Néper. Il y a plusieurs façons de définir cette fonction.

Nous pouvons d'abord donner une définition de l'exponentielle par rapport à sa dérivée.

La fonction exponentielle est l'unique fonction qui vérifie \(f(x) = f'(x)\) et \(f(0) = 1\). Autrement dit, la dérivée de l'exponentielle est elle-même.

Nous pouvons dire que la fonction exponentielle est l'unique solution de l'équation différentielle \(f(x) = f'(x)\) avec condition initiale \(f(0) = 1\). Les équations différentielles sont celles qui impliquent la dérivée d'une fonction. Tandis que la solution d'une équation algébrique « usuelle » est un nombre, la solution d'une équation différentielle est une fonction.

Même si nous pouvons utiliser sa dérivée — ou une équation différentielle — pour définir la fonction exponentielle, il y a aussi une définition basée sur l'algèbre.

La fonction exponentielle \(exp(x)\) est l'unique fonction qui vaut \(1\) en \(0\) et qui transforme une somme en produit : \(exp(x + y) = exp(x)exp(y)\).

Nous pouvons également définir la fonction exponentielle relative au logarithme népérien.

La fonction exponentielle \(exp(x)\) est la fonction inverse (ou la bijection réciproque) du logarithme népérien, \(ln(x)\).

Comme l'exponentielle est l'inverse du logarithme, le logarithme est l'inverse de l'exponentielle.

Tandis que nous définissons la fonction exponentielle par rapport à sa dérivée, nous pouvons définir la fonction logarithme à l'aide d'une primitive.

Le logarithme népérien ou logarithme naturel, \(ln(x)\), est la primitive de la fonction inverse \(\frac{1}{x}\) qui s'annule quand \(x = 1\).

Nous pouvons également définir la fonction exponentielle à l'aide d'une série de Taylor ou série entière. Précisément, la fonction exponentielle peut être définie ainsi : \[ exp(x) = \sum_ {n=0}^{+\infty} \frac{x^n}{n!}\] En effet, le théorème de Taylor nous permet de générer une série qui est égale à une fonction donnée, sous certaines conditions.

Exponentielle et logarithme : relation

Quelle est la relation entre les fonctions exponentielle et logarithme ? La fonction exponentielle est la fonction inverse (ou bijection réciproque) du logarithme népérien, et vice-versa. En effet, \(ln(e^x) = x\) et \(ln(e^x) = x \). De plus, si nous examinons leurs courbes représentatives, elles sont symétriques par rapport à la droite \(y = x\).

Exponentielle et logarithme Courbes représentatives StudySmarterFig. 1 - Les courbes représentatives des fonctions exponentielle et logarithme

Exponentielle et logarithme : cours

Détaillons les informations importantes qu'il faut savoir sur les fonctions exponentielle et logarithme.

Le domaine de définition de la fonction exponentielle est \(\mathbb{R}\). Or, le logarithme népérien n'est défini que pour des nombres réels strictement positifs. De plus, les fonctions exponentielle et logarithme sont dérivables, et donc continues sur leurs domaines de définition.

Si une fonction est dérivable sur un ensemble donné, alors elle est forcément continue sur ce même domaine.

La dérivée de \(exp(x)\) est elle-même, alors que la dérivée de \(ln(x)\) est \(\frac{1}{x}\). En utilisant la dérivée d'une composition de fonctions, nous pouvons généraliser ces résultats pour une fonction dérivable \(u(x)\).

Fonction
Dérivée
\(exp(u(x))\)
\(u'(x)exp(u(x))\)
\(ln(u(x))\)
\(\frac{u'(x)}{u(x)}\)

Nous pouvons utiliser les dérivées de l'exponentielle et du logarithme pour étudier les sens de variation de ces deux fonctions. Comme \(exp(x)\) et \(\frac{1}{x}\) sont positives sur les ensembles de définition de \(exp(x)\) et \(ln(x)\) respectivement, ces deux fonctions sont croissantes.

Propriétés du logarithme et de l'exponentielle

Pour manipuler ces fonctions avec aisance, il y a certaines règles à connaître. Quelles sont les propriétés du logarithme et de l'exponentielle ? Voyons d'abord les propriétés de l'exponentielle, \(exp(x)\), qui sont très similaires aux règles pour les puissances.

  1. \(exp(0) = 1\)

  2. \(exp(1) = e\)

  3. \(exp(a+b) = exp(a)exp(b)\)

  4. \(exp(na) = (exp(a))^n\)

Pour se souvenir des propriétés du logarithme, nous pouvons nous servir du fait que le logarithme népérien, \(ln(x)\), est la fonction inverse ou la bijection réciproque de la fonction exponentielle.

  1. \(ln(1) = 0\)

  2. \(ln(e) = 1\)

  3. \(ln(ab) = ln(a) + ln(b)\)

  4. \(ln(a^n) = n ln(a)\)

Limites de l'exponentielle et du logarithme

L'étude d'une fonction n'est pas complète sans déterminer les limites aux points où elle n'est pas définie. Les limites de l'exponentielle et du logarithme en \(+ \infty \) sont \(+ \infty \). De plus, la limite de la fonction exponentielle en \(- \infty \) est \(0\) et la limite de la fonction logarithme en \(0\) est \(- \infty \).

Même si les fonctions exponentielle et logarithme tendent toutes les deux vers \(+ \infty\) quand \(x\) tend vers \(+ \infty\), elles évoluent à des vitesses différentes. Il est donc important de connaître les croissances comparées de l'exponentielle, du logarithme et des polynômes.

  • La fonction exponentielle augmente le plus rapidement. En effet, pour tout réel \(n\) strictement positif, nous avons les résultats suivants pour des limites : \[\lim_{x \to + \infty} \frac{e^x}{x^n} = + \infty \hspace{20 mm} \lim_{x \to - \infty} e^{x} x^{n} = 0 \] Nous disons souvent que l'exponentielle gagne, ou emporte, sur une puissance.

  • La fonction logarithme augmente le plus lentement. Nous avons ainsi des résultats similaires qui portent sur les limites : \[\lim_{x \to + \infty} \frac{ln(x)}{x^n} = 0 \hspace{20 mm} \lim_{\substack{x\to\infty\\x>0}} ln(x) x^{n} = 0 \] Pareil ici, nous disons souvent qu'une puissance gagne ou emporte sur le logarithme.

Exponentielle et logarithme - Points clés

  • La fonction exponentielle \(exp(x)\) est la fonction inverse, ou la bijection réciproque, du logarithme népérien, \(ln(x)\). Il y a plusieurs façons de définir ces fonctions indépendamment de l'autre.
  • Il y a certaines propriétés importantes qu'il faut retenir pour les manipuler.
  • Les fonctions exponentielle et logarithme sont continues, dérivables et croissantes sur leurs domaines de définition respectifs, \(\mathbb{R}\) et \(\mathbb{R}_{+}^{*}\).
  • Même si les deux fonctions sont croissantes, elles évoluent à des vitesses différentes : l'exponentielle gagne sur une puissance, alors qu'une puissance gagne sur le logarithme.

How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image