Trouver des contenus d'apprentissage
Fonctionnalités
Découvrir
Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freePour deux fonctions quelconques, \(f \circ g(x) = g \circ f(x)\).
Considère les fonctions \(f : \mathbb{Z} \to \mathbb{N}\) et \(g : \mathbb{R} \to \mathbb{Z}\). L'ensemble d'arrivée de la fonction composée \(f \circ g\) est ___.
Une composition de fonctions dérivable est également une fonction dérivable.
Considère les fonctions \(f : \mathbb{Z} \to \mathbb{N}\) et \(g : \mathbb{R} \to \mathbb{Z}\). Le domaine de définition de la fonction composée \(f \circ g\) est ___.
Pour deux fonctions dérivables, \(f \circ g(x) = g \circ f(x)\).
Content creation by StudySmarter Biology Team.
Sources verified by Gabriel Freitas.
Quality reviewed by Gabriel Freitas.
Published: 17.02.2023.
Last updated: 17.02.2023.
Tu sais peut-être manipuler des fonctions usuelles, mais que faire pour des fonctions plus complexes ? Souvent, lorsque nous avons affaire à une fonction plus compliquée, il s'agit d'une fonction composée, aussi appelée composition de fonctions. Dans ce résumé de cours, nous définirons d'abord ce qu'est une composition de fonctions. Par la suite, nous discuterons son domaine de définition. Nous considérons ensuite la dérivabilité d'une fonction composée et comment déterminer sa dérivée. Pour terminer, nous nous pencherons sur les limites de fonctions composées.
Une fonction composée est la même chose qu'une composition de fonctions. Il s'agit de l'application consécutive de deux ou plusieurs fonctions.
Une composition des fonctions \(f(x)\) et \(g(x)\) est \(f \circ g(x) = f(g(x))\).
Considère les fonctions \(f(x) = x^2\) et \(g(x) = 2x + 5\). Dans ce cas, \(f \circ g(x) = (2x +5)^2\) et \(g \circ f(x) = 2x^2+5\).
Cet exemple illustre que \(f \circ g(x) \neq g \circ f(x)\).
Pour pouvoir effectuer la composition de deux fonctions, nous devons vérifier que les domaines de définition des deux fonctions le permettent.
Il est important de penser aux ensembles de départ et d'arrivée des fonctions que nous souhaitons composer. Cela nous permettrait de déterminer le domaine de définition de la fonction composée.
Considérons les fonctions \(f : B \to C\) et \(g : A \to B\). Le domaine de définition de la fonction composée \(f \circ g\) est le domaine de définition de \(g\), en l'occurrence l'ensemble \(A\). De plus, les valeurs de \(f \circ g\) sont dans l'ensemble d'arrivée de \(f\), en l'occurrence \(C\).
Considère les fonctions \(f(x) = \ln x \) et \(g(x) = x^2\). Le domaine de définition de la fonction composée \(\ln (x^2)\) est \(\mathbb{R}\), même si la fonction logarithme népérien n'est définie que pour des nombres réels.
Nous pouvons composer deux fonctions seulement si l'ensemble d'arrivée de la fonction « interne » est l'ensemble de départ de la fonction externe.
Outre son domaine de définition, une fonction composée hérite d'autres propriétés des fonctions dont elle est composée, notamment sa dérivabilité.
Nous pouvons affirmer la dérivabilité d'une fonction composée grâce à la dérivabilité des fonctions dont elle est composée. Si \(f\) et \(g\) sont des fonctions dérivables, alors leur composition est dérivable. Plus précisément, si \(g\) est dérivable en un point \(x\) et \(f\) est dérivable en \(g(x)\), alors la fonction composée \(f \circ g\) est dérivable également.
Peux-tu expliquer pourquoi la fonction \(\sin(x^2 - 1)\) est dérivable ?
Comme \(\sin(x)\) et \(x^2 - 1\) sont des fonctions dérivables, leur composition est dérivable également.
Besoin d'un rappel sur les fonctions de référence ? N'hésite pas à consulter notre résumé de cours sur les fonctions usuelles.
Après avoir étudié la dérivabilité d'une fonction composée, il est naturel d'apprendre comment déterminer sa dérivée.
Considérons deux fonctions dérivables \(f\) et \(g\) deux fonctions dérivables. Pour déterminer la dérivée d'une fonction composée, nous nous servons de la formule suivante : \[ (f \circ g)'(x) = g'(x) \times f'(g(x)) \] Autrement dit, il s'agit de multiplier la dérivée de la fonction « interne » \(g\) par la dérivée de la fonction « externe » \(f\).
Es-tu capable de déterminer la dérivée de \(\ln({3x^2 + 5})\) ?
Ici, la fonction interne est \(g(x) = 3x^2 + 5\) et la fonction externe est la fonction logarithme népérien \(f(x) = \ln(x)\)
Nous avons alors \(g'(x) = 6x\).
De plus, comme \(f'(x) = \frac{1}{x}\), nous avons \(f'(g(x)) = \frac{1}{3x^2 + 5}\).
Ainsi, la dérivée de \(\ln({2x^2 + 5})\) est \( \frac{6x}{2x^2 + 5}\).
Pour plus d'informations sur la dérivée d'une fonction composée, n'hésite pas à consulter notre résumé de cours à ce sujet.
Considérons une fonction composée \(f \circ g(x)\), ainsi que \(a, b \in \mathbb{R} \cup \{- \infty, +\infty\}\). Si \(\lim_{x \to a} g(x) = b\), alors \(\lim_{x \to a} f \circ g(x) = \lim_{x \to b} f(x)\).
Voyons comment mettre en œuvre cette propriété pour déterminer la limite d'une fonction composée.
Peux-tu déterminer la limite de la fonction \(e^{1 - x^2}\) lorsque \(x\) tend vers \(-\infty\) ?
Il s'agit de déterminer une limite de la fonction composée \(f \circ g(x)\), où \(f(x) = e^x\) et \(g(x) = 1 - x^2\).
Comme \(\lim_{x \to - \infty} 1 - x^2= - \infty \),
\(\lim_{x \to -\infty} e^{1 - x^2} = \lim_{x \to -\infty} e^x\)\(\lim_{x \to -\infty} e^{1 - x^2} = 0\)
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!