Aire des cerfs-volants

Un jour, Robert faisait voler son cerf-volant au parc lorsqu'il s'est soudain retrouvé coincé entre les branches d'un arbre. Lorsqu'il a finalement réussi à le récupérer, il a trouvé le film plastique de son cerf-volant déchiré au milieu. Pour remplacer le corps de son cerf-volant, il doit trouver la zone afin d'acheter la bonne quantité de film plastique à la quincaillerie. Étant donné que le cadre de son cerf-volant fournit les dimensions requises de ses diagonales, existe-t-il une formule particulière qu'il pourrait utiliser pour déterminer la surface ?

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a lignes parallèles.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a deux paires de côtés adjacents égaux.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a une paire d'angles opposés égaux qui sont aigus.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a deux diagonales non égales.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les diagonales d'un cerf-volant sont perpendiculaires et ne se coupent pas en deux.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 16 pieds et 27 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 52 pieds et 71 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 11 pieds et 22 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 7 pouces et 14 pouces ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 23 pouces et 57 pouces ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a lignes parallèles.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a deux paires de côtés adjacents égaux.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a une paire d'angles opposés égaux qui sont aigus.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un cerf-volant a deux diagonales non égales.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les diagonales d'un cerf-volant sont perpendiculaires et ne se coupent pas en deux.Cette affirmation est-elle vraie ou fausse ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 16 pieds et 27 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 52 pieds et 71 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 11 pieds et 22 pieds ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 7 pouces et 14 pouces ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la surface d'un cerf-volant dont les diagonales mesurent 23 pouces et 57 pouces ?

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Aire des cerfs-volants

  • Temps de lecture: 8 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    En fait, il y en a une ! Dans cet article, nous allons discuter d'une formule qui permet de calculer l'aire des cerfs-volants et observer plusieurs exemples travaillés qui utilisent cette technique.

    Récapitulation. Définition d'un cerf-volant

    Avant de commencer, commençons par nous rafraîchir la mémoire sur les cerfs-volants. Un cerf-volant est un type de quadrilatère qui possède deux paires de côtés adjacents égaux. Comme tous les autres quadrilatères, il contient 4 côtés, 4 angles et 2 diagonales.

    La structure d'un cerf-volant répond aux caractéristiques d'un quadrilatère cyclique. Un quadrilatère cyclique est un quadrilatère dont les quatre sommets sont situés sur un cercle. Il est parfois appelé quadrilatère inscrit. Le cercle qui contient ces quatre sommets sur sa circonférence est appelé cercle circonscrit ou cercle circonscrit. Voici le schéma d'un cerf-volant inscrit dans un cercle.

    Un cerf-volant inscrit dans un cercle. Un exemple de quadrilatère cyclique.

    Exemple de quadrilatère cyclique

    Propriétés d'un cerf-volant

    Rappelons maintenant les propriétés fondamentales d'un cer f-volant. Nous avons ici un cerf-volant noté ABCD. M est le point d'intersection des diagonales.

    Un cerf-volant désigné par ABCD et M est le point d'intersection des diagonales.

    Schéma d'un cerf-volant

    Le tableau suivant est une liste de ses caractéristiques.

    Propriétés d'un cerf-volant

    Description

    Il possède deux paires de côtés adjacents égaux

    AB = BC et AD = DC

    Il possède une paire d'angles opposés égaux qui sont obtus

    ∠BAD = ∠BCD > 90o

    Pas de lignes parallèles

    Elle possède deux diagonales non égales

    AC ≠ BD

    Les diagonales sont perpendiculaires et se coupent en deux

    AC ⊥ BD et AM = MC et BM = MD

    Nous sommes maintenant prêts à en apprendre davantage sur l'aire d'un cerf-volant.

    Formule de calcul de l'aire d'un cerf-volant

    La surface d'un cerf-volant est l'espace délimité par ses côtés. Si l'on se réfère à notre schéma précédent d'un cerf-volant, la formule de l'aire est donnée par la formule suivante

    \[A=\frac{1}{2}\times d_1 \times d_2\]

    où \(d_1\) et \(d_2\) sont les longueurs de la diagonale verticale et de la diagonale horizontale, respectivement.

    Diagramme d'un cerf-volant avec deux diagonales, l'une horizontale appelée \(d_1\) et l'autre verticale appelée \(d_2\).

    Surface d'un cerf-volant

    Calculer l'aire d'un cerf-volant

    Nous avons maintenant une recette explicite pour trouver la surface d'un cerf-volant. Mais comment en est-on arrivé là ? Dans cette partie, nous verrons étape par étape comment cette formule permet de déterminer la surface d'un cerf-volant donné. Encore une fois, portons notre attention sur notre cerf-volant précédent, illustré ci-dessous.

    Un cerf-volant désigné par ABCD et M est le point d'intersection des diagonales.

    Surface d'un cerf-volant

    Pour notre cerf-volant ABCD ci-dessus, appelons la longueur de la diagonale la plus courte \(AC=x\) et la longueur de la diagonale la plus longue \(BD=y\). D'après les propriétés d'un cerf-volant, ces deux diagonales sont perpendiculaires (à angle droit) et se coupent en deux.

    En tenant compte de cela, nous avons

    \[AM=MC=\frac{AC}{2}=\frac{x}{2}\]

    La surface du cerf-volant ABCD est constituée de la somme de deux surfaces : le triangle ABD et le triangle BCD. En l'écrivant sous forme d'expression, on obtient

    Surface du cerf-volant ABCD = Surface de ΔABD + Surface de ΔBCD

    Appelons cette équation 1.

    L'aire d'un triangle est le produit de sa base et de sa hauteur multiplié par la moitié, c'est-à-dire ,

    \[\text{Aire d'un triangle}=\frac{1}{2}\times b \times h\]

    où \(b\) est la base et \(h\) la hauteur. À l'aide de cette formule, déterminons les aires du triangle ABD et du triangle BCD.

    \[\text{Aire du triangle ABD}=\frac{1}{2}\times AM\times BD\]

    \[\text{Aire du triangle BCD}=\frac{1}{2}\times MC\times BD\]

    En remplaçant AM, BD et MC par \N(x\N) et \N(y\N), on obtient

    \[\text{Aire du triangle ABD}=\frac{1}{2}\times\frac{x}{2}\times y=\frac{xy}{4}\]

    \[\text{Aire du triangle BCD}=\frac{1}{2}\times\frac{x}{2}\times y=\frac{xy}{4}\]

    En utilisant l'équation 1, nous obtenons

    \[\text{Aire du cerf-volant ABCD}=\frac{xy}{4}+\frac{xy}{4}=\frac{xy}{2}\]

    Enfin, en substituant les valeurs de \(x\) et \(y\), nous obtenons la formule requise pour l'aire d'un cerf-volant.

    \[\text{Aire d'un cerf-volant}=\frac{1}{2}\times AC \times BD\]

    L'aire d'un cerf-volant et d'un losange

    La formule de l'aire d'un cerf-volant suit la même idée que celle de l'aire d'un losange. Rappelons la structure d'un losange. Nous avons ici un losange noté ABCD. M est le point d'intersection des diagonales.

    Losange ABCD avec point médian D

    Diagramme d'un losange

    Tu peux déjà voir les ressemblances avec un cerf-volant, rien qu'en regardant ce diagramme. Le tableau suivant est une liste de ses caractéristiques.

    Propriétés d'un losange

    Description

    A quatre côtés égaux

    AB = BC = CD = DA

    Possède des angles opposés de mesures égales

    ∠ABC = ∠CDA et ∠BCD = ∠DAB

    Possède deux paires de côtés parallèles

    AB // DC et AD // BC

    Possède deux diagonales non égales

    AC ≠ BD

    Les diagonales sont perpendiculaires et se coupent en deux

    AC ⊥ BD et AM = MC et BM = MD

    Formule de l'aire d'un losange

    \[A=\frac{1}{2}\times d_1 \times d_2\]

    d1 et d2 sont respectivement les longueurs de la diagonale verticale et de la diagonale horizontale.

    Diagramme d'un losange avec deux diagonales, l'une horizontale appelée \(d_1\) et l'autre verticale appelée \(d_2\).

    Surface d'un losange

    Exemples d'aires de cerfs-volants

    Dans cette section, nous allons examiner plusieurs exemples travaillés qui utilisent cette formule permettant de déduire l'aire d'un cerf-volant. Voici le premier exemple.

    Cathy possède 3 cartes de notes identiques en forme de cerf-volant dont les diagonales mesurent 5 pouces et 17 pouces. Détermine la somme des aires de ces 3 cartes.

    Solution

    Les diagonales de chaque boîte sont données par \(d_1=5\) et \(d_2=17\). En utilisant la formule de calcul de l'aire d'un cerf-volant, l'aire d'une carte est la suivante

    \[A=\frac{1}{2}\\N- fois 5 \N- fois 17=\frac{82}{2}=42.5\N]

    La surface de chaque cerf-volant est donc de 42,5 pouces2. Comme nous avons 3 cartes identiques, il suffit de multiplier cette surface par 3 pour obtenir la surface totale.

    \42,5 fois 3 = 127,5 pouces]

    Ainsi, la surface totale des 3 cartes est de 127,5 po2.

    Prenons un autre exemple.

    Marie a un carton découpé en forme de cerf-volant. La diagonale la plus courte mesure 3 pieds tandis que la diagonale la plus longue mesure 14 pieds. Quelle est l'aire de ce découpage ?

    Elle décide ensuite de diviser ce découpage en 7 morceaux distincts d'aires égales. Quelle serait la surface de chaque morceau ?

    Solution

    Les diagonales de ce découpage sont données par \(d_1=3\) et \(d_2=14\). En utilisant la formule de calcul de l'aire d'un cerf-volant, l'aire de ce découpage est la suivante

    \N-[A=\frac{1}{2}\Nfois 3 \Nfois 14=\frac{42}{2}=21\N].

    L'aire de ce découpage est donc de 21 pi2. Puisque Mary veut diviser cette découpe en 7 segments identiques, nous pouvons simplement diviser cette surface par 7 pour identifier la surface de chaque morceau.

    \N- [\Nfrac{21}{7}=3\N]

    La surface de chaque morceau est donc de 3 pi2.

    Voici un dernier exemple avant de clore ce sujet.

    David a un cerf-volant dont la surface est de 304 pouces carrés. La diagonale la plus courte a une longueur de 16 pouces. Quelle est la longueur de la diagonale la plus longue ?

    Solution

    Dans cette question, on nous donne les mesures de l'aire et de l'une des diagonales de ce cerf-volant, à savoir \(A=304\) et \(d_1=16\). Pour trouver la longueur de la diagonale la plus longue, \N(d_2\N), nous devons réarranger la formule donnée pour faire de \N(d_2\N) le sujet. Étant donné que la formule pour la surface d'un cerf-volant est la suivante

    \[A=\frac{1}{2}\times d_1 \times d_2\]

    En réarrangeant cette formule pour que \ (d_2\) devienne le sujet, on obtient

    \[d_2=\frac{2A}{d_1}\]

    En substituant maintenant nos valeurs connues pour \(A\) et \(d_1\), nous obtenons

    \[d_2=\frac{2\times 304}{16}=38\]

    Ainsi, la longueur de la diagonale la plus longue est de 38 pouces.

    Surface des cerfs-volants - Points clés

    • Uncerf-volant est un type de quadrilatère sans lignes parallèles.
    • Un cerf-volant a deux paires de côtés adjacents égaux et une paire d'angles opposés égaux qui sont obtus.
    • Un cerf-volant a deux diagonales non égales.
    • Les diagonales d'un cerf-volant sont perpendiculaires et se coupent en deux.
    • La surface d'un cerf-volant est donnée par \[A=\frac{1}{2}\times d_1 \times d_2\] où \(d_1\) et \(d_2\) sont les longueurs de la diagonale verticale et de la diagonale horizontale, respectivement.
    Questions fréquemment posées en Aire des cerfs-volants
    Comment calcule-t-on l'aire d'un cerf-volant ?
    Pour calculer l'aire d'un cerf-volant, multipliez la longueur des deux diagonales et divisez par 2. Formule : (d1 * d2) / 2.
    Quels sont les diagonales du cerf-volant ?
    Les diagonales du cerf-volant sont les lignes qui vont d'un sommet à l'autre, en diagonale, traversant le centre de la figure.
    Pourquoi utilise-t-on la multiplication pour trouver l'aire ?
    On utilise la multiplication des diagonales car l'aire d'un cerf-volant est basée sur le produit des diagonales divisées par 2.
    Est-ce que les diagonales d'un cerf-volant sont égales ?
    Les diagonales d'un cerf-volant ne sont généralement pas égales ; elles se croisent à un angle de 90 degrés.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Un cerf-volant a lignes parallèles.Cette affirmation est-elle vraie ou fausse ?

    Un cerf-volant a deux paires de côtés adjacents égaux.Cette affirmation est-elle vraie ou fausse ?

    Un cerf-volant a une paire d'angles opposés égaux qui sont aigus.Cette affirmation est-elle vraie ou fausse ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 8 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !