Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeContent creation by StudySmarter Biology Team.
Published: 26.05.2023. Last updated: 26.05.2023.
Calculer des aires est une compétence essentielle, utile dans de nombreux domaines de la vie quotidienne. Que tu souhaites estimer la quantité de peinture pour une pièce ou calculer la surface d'un terrain, ce résumé de cours est pour toi. Nous revisiterons les formules pour calculer l'aire de différentes formes géométriques, du rectangle au cercle, en passant par le trapèze et le parallélogramme. Et pour faciliter ton apprentissage, un tableau récapitulatif t'attend à la fin !
Pour trouver l'aire d'un rectangle, il faut juste faire le produit de la longueur et de la largeur.
Si la largeur d'un rectangle est \(6 m\) et sa longueur est \(12 m\), son aire est donc \(12 \times 6 = 72 m^2\).
Pour trouver l'aire d'un parallélogramme, il faut faire le produit de son hauteur \(h\) et sa base \(a\).
Fig. 2 - Calculer l'aire d'un parallélogramme
Si la base d'un parallélogramme est \(5 m\) et son hauteur est \(4 m\), son aire est donc \(5 \times 4 = 20 m^2\).
Pour trouver l'aire d'un trapèze, il faut faire le produit de son hauteur \(h\) et la moyenne des longueurs de ses côtés parallèles, \(\frac{a+b}{2}\).
Si la hauteur d'un trapèze est \(3 m\) et ses deux côtés parallèles mesurent \(11 m\) et \(7 m\), alors son aire est \(3 \times \frac{7+11}{2} = 27 m^2\).
Pour trouver l'aire d'un triangle rectangle, il faut faire le produit d'une de ses hauteurs \(h\) et de sa base \(b\), et ensuite diviser par deux.
Fig. 4 - Calculer l'aire d'un triangle rectangle
Si une hauteur d'un triangle rectangle est \(3 m\) et la base est \(4 m\), alors son aire est \( \frac{3 \times 4}{2} = 6 m^2\).
Pour trouver l'aire d'un triangle quelconque, il faut faire le produit d'une hauteur \(h\) et de sa base \(b\), et ensuite diviser par deux.
Fig. 5 - Calculer l'aire d'un triangle quelconque
Si une hauteur d'un triangle rectangle est \(7 m\) et la base est \(8 m\), alors son aire est \( \frac{7 \times 8}{2} = 28 m^2\).
Pour trouver l'aire d'un triangle équilatéral, il faut multiplier le carré de la longueur du côté (a) par la racine carrée de 3, puis diviser par 4. La formule est donc \(A = \frac{\sqrt{3}a^2}{4}\).
Si le côté d'un triangle équilatéral mesure \(4 m\), son aire est donc \(\frac{\sqrt{3} \times 4^2}{4} = 4\sqrt{3} m^2\).
Pour trouver l'aire d'un cercle, il faut multiplier le carré du rayon (r) par pi (π). La formule est donc \(A = πr^2\).
Si le rayon d'un cercle est \(5 m\), son aire est donc \(π \times 5^2 = 25π m^2\).
Pour trouver l'aire d'un losange, il faut multiplier les longueurs des deux diagonales (d1 et d2) et diviser par deux. La formule est donc \(A = \frac{d1 \times d2}{2}\).
Par exemple, si les diagonales d'un losange mesurent \(6 m\) et \(8 m\), son aire est donc \(\frac{6 \times 8}{2} = 24 m^2\).
Voici le tableau récapitulatif des formules d'aires mentionnées dans le résumé de cours :
Formule géométrique | Formule de l'aire |
Rectangle | \(A = longueur \times largeur\) |
Parallélogramme | \(A = base \times hauteur\) |
Trapèze | \(A = hauteur \times \frac{base1 + base2}{2}\) |
Triangle rectangle | \(A = \frac{base \times hauteur}{2}\) |
Triangle quelconque | \(A = \frac{base \times hauteur}{2}\) |
Triangle équilatéral | \(A = \frac{\sqrt{3} \times côté^2}{4}\) |
Cercle | \(A = π \times rayon^2\) |
Losange | \(A = \frac{diagonale1 \times diagonale2}{2}\) |
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!