What is Investigating Moyenne géométrique?

AI Summary

Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.

Get started for free

Access relevant flashcards for Investigating Photosynthesis

Start learning
Deprecated: strtotime(): Passing null to parameter #1 ($datetime) of type string is deprecated in /var/www/html/web/app/themes/studypress-core-theme/template-parts/API/explanations/minimal-design/main-content.php on line 24
  • Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by

    Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 24.06.2024. Last updated: 01.01.1970.

À ce stade, tu as probablement entendu le terme "moyenne" utilisé à de nombreuses reprises en mathématiques. Mais qu'est-ce qu'on entend par là (pardonne-moi le jeu de mots) ? Il existe différents types de moyennes, et l'une d'entre elles que tu as probablement rencontrée s'appelle la moyenne arithmétique. Il s'agit de prendre un ensemble de nombres, de les additionner et de diviser ce nombre par le nombre de nombres que tu as pour trouver une "moyenne" des nombres. Par exemple, tu pourrais vouloir connaître la note moyenne d'un test de classe pour déterminer si tes résultats sont dans la moyenne, inférieurs à la moyenne ou supérieurs à la moyenne. Dans cet article, cependant, nous allons étudier un autre type de moyenne appelé moyenne géométrique. Qu'entendons-nous par moyenne géométrique ?

Définition de la moyenne géométrique

Lamoyenne géométrique est définie comme le taux de rendement moyen d'un ensemble de valeurs qui est calculé à l'aide des produits de ses termes.

Supposons que nous ayons un ensemble de n nombres. La moyenne géométrique consiste à multiplier l'ensemble des nombres et à prendre la racine n positive. Ainsi, si nous avons deux nombres, nous les multiplions et prenons la racine carrée positive, si nous avons trois nombres, nous les multiplions et prenons la racine cubique positive, si nous avons quatre nombres, nous les multiplions et prenons la racine quatrième positive, et ainsi de suite.

Formule de la moyenne géométrique

Définition de la moyenne géométrique

Pour l'ensemble de n nombres, x1, x2,..., xnla formule de la moyenne géométrique est donnée par la formule suivante :

( xi i=1n)1n= x1x2...xnn

Moyenne géométrique Exemples

Supposons que nous ayons un ensemble de deux nombres, 9 et 4. Pour trouver la moyenne géométrique, nous devons d'abord multiplier 9 et 4 pour obtenir 36 et, puisque nous avons deux nombres, nous devons prendre la racine carrée de 36 pour obtenir six. Mathématiquement, nous pouvons écrire (9×4)12=3612=36=6. La moyenne géométrique est donc 6.

Supposons que nous ayons l'ensemble des nombres 4, 8 et 16. Pour calculer la moyenne géométrique, nous multiplions d'abord 4, 8 et 16 pour obtenir 512. Comme il y a trois nombres, nous prenons ensuite la racine cubique. Mathématiquement, nous pouvons écrire 4×8×1613=(512)13=8. Ainsi, 8 est la moyenne géométrique de nos nombres.

Supposons que nous ayons l'ensemble des nombres 1, 2, 3, 4 et 5. Pour trouver la moyenne géométrique, nous commençons par multiplier ensemble 1, 2, 3, 4 et 5 pour obtenir 120. Comme nous avons cinq nombres, nous prenons la racine cinquième de 120 qui est 2,61 à 2 décimales près. Mathématiquement, nous pouvons écrire (1×2×3×4×5)15=(120)15=2.61. La moyenne géométrique est donc de 2,61.



La moyenne géométrique dans un triangle

Le calcul de la moyenne géométrique peut être particulièrement utile en géométrie. Considère le triangle ABCD ci-dessous :

La moyenne géométrique dans un triangle, diagramme expliquant le théorème de la moyenne géométrique, Jordan MadgeTriangle à moyenne géométrique, Jordan Madge- StudySmarter Originals


L'altitude d'un triangle est une ligne tracée à partir du sommet particulier d'un triangle qui forme une ligne perpendiculaire à la base du triangle. Dans ce triangle, l'altitude est donc la ligne AC. Nous avons également le côté gauche de BD, qui est BC, ainsi que le côté droit de BD, qui est CD.


Maintenant, remarque que si nous "séparons" le triangle ci-dessus, nous obtenons deux triangles plus petits. Nous remarquons également que si nous faisons pivoter le triangle de gauche, nous obtenons simplement une version plus petite du triangle de droite. C'est ce que montre le diagramme ci-dessous.

Moyenne géométrique, Explication, Jordan MadgeExplication de la moyenne géométrique, Jordan Madge- StudySmarter Originals


Maintenant, remarque que les deux triangles BAC et ADC sont mathématiquement similaires, nous pouvons donc utiliser les rapports pour trouver les longueurs manquantes. En nommant le côté gauche a, le côté droit b et l'altitude x, nous avons ce qui suit :


leftaltitude=altituderightax=xbab=x2x=ab


Par conséquent, l'altitude, x peut être calculée en trouvant la moyenne géométrique de a et b. C'est ce qu'on appelle le théorème des moyennes géométriques pour les triangles.

La moyenne géométrique dans un triangle, Triangle avec altitude manquante à trouver, Jordan MadgeExemple de moyenne géométrique, Jordan Madge- StudySmarter Originals


Dans le triangle ABCD, BC=6 cm, CD=19 cm et AC= x cm comme indiqué ci-dessus. Trouve la valeur de l'altitude x.


Solution :

En utilisant les résultats du théorème des moyennes géométriques pour les triangles, on trouve que id="5224717" role="math" x=6 ×19=114= 10.7cm (1. d.p)

La moyenne géométrique dans un triangle, Triangle avec altitude manquante à trouver, Jordan MadgeExemple de moyenne géométrique, Jordan Madge- StudySmarter Originals

Dans le triangle ABCD, BC=4 cm, CD=9 cm et AC= x cm comme indiqué ci-dessus. Trouve la valeur de l'altitude x.


Solution :

En utilisant les résultats du théorème des moyennes géométriques pour les triangles, on obtient que id="5224718" role="math" x=9×4=36=6cm


Moyenne géométrique et moyenne arithmétique

Lorsque nous parlons de la moyenne d'un ensemble de nombres, nous faisons généralement référence à la moyenne arithmétique. La moyenne arithmétique consiste à prendre la somme de l'ensemble des nombres et à la diviser par le nombre de nombres que nous avons.


Formule de la moyenne arithmétique

La formule de la moyenne ar ithmétique est donnée par ce qui suit :


A= 1naii=1n


Ici, A est défini comme la valeur de la moyenne arithmétique, n est le nombre de valeurs de l'ensemble et ai sont les nombres de l'ensemble.

Trouve la moyenne arithmétique et géométrique des nombres 3, 5 et 7.


Solution :

Pour obtenir la moyenne arithmétique, il faut d'abord additionner 3, 5 et 7 pour obtenir 15. Puis, comme notre ensemble comporte trois nombres, nous diviserons 15 par 3 pour obtenir 5. Mathématiquement, nous pouvons écrire :

A=13(3+5+7)=5



Pour obtenir la moyenne géométrique, nous devrions d'abord multiplier ensemble 3, 5 et 7 pour obtenir 105, puis prendre la racine cubique de 105 (puisque nous avons trois nombres dans notre ensemble). La racine cubique de 105 est 4,72 à 2. d.p et donc la moyenne géométrique des nombres est 4,72. Mathématiquement, nous pouvons écrire :

G=(3×5×7)13=(105)13=4.72



Remarque que la moyenne arithmétique de 5 est assez proche de la moyenne géométrique de 4,72. Nous allons maintenant explorer les différentes raisons pour lesquelles nous pouvons utiliser la moyenne géométrique plutôt que la moyenne arithmétique.

Différences entre la moyenne géométrique et la moyenne arithmétique

Il existe plusieurs différences essentielles entre la moyenne géométrique et la moyenne arithmétique. La première différence, la plus évidente, est le fait qu'elles sont calculées à l'aide de deux formules différentes. Dans l'exemple précédent, nous avons obtenu une moyenne arithmétique de 5 et une moyenne géométrique de 4,72. Il est important de noter que la moyenne géométrique est toujours inférieure ou égale à la moyenne arithmétique. Par exemple, si nous prenons l'ensemble unique 2puisqu'il n'y a qu'un seul nombre dans cet ensemble, la moyenne géométrique est 2 et la moyenne arithmétique est également 2.



De plus, la moyenne arithmétique peut être utilisée à la fois pour les nombres positifs et négatifs. Cependant, ce n'est pas le cas de la moyenne géométrique ; la moyenne géométrique ne peut être utilisée que pour un ensemble de nombres positifs. Cela est dû au fait qu'une erreur peut survenir dans des éventualités telles que la prise de la racine carrée de nombres négatifs.


De plus, nous utilisons la moyenne géométrique et la moyenne arithmétique pour des raisons différentes. La moyenne arithmétique a une multitude d'utilisations quotidiennes, mais la moyenne géométrique est plus couramment utilisée lorsqu'il y a une sorte de corrélation entre les nombres. Par exemple, en finance, la moyenne géométrique est utilisée pour calculer les taux d'intérêt. La moyenne arithmétique peut être utile pour trouver la température moyenne sur une semaine.

Il existe en fait un troisième type de moyenne appelé moyenne harmonique. La moyenne harmonique est calculée en élevant au carré la moyenne géométrique et en la divisant par la moyenne arithmétique. Ce type de moyenne est couramment utilisé dans l'apprentissage automatique.


Moyenne géométrique - Principaux enseignements

  • La moyenne géométrique consiste à multiplier ensemble l'ensemble des nombres, puis à prendre laracine nième positive .
  • Elle peut être représentée par la formule suivante ( xi i=1n)1n= x1x2...xnn.
  • Le calcul de la moyenne géométrique peut être particulièrement utile en géométrie.
  • L'altitude d'un triangle est une ligne tracée à partir du sommet particulier d'un triangle qui forme une ligne perpendiculaire à la base du triangle.
  • Le théorème de la moyenne géométrique pour les triangles peut être utilisé pour calculer l'altitude d'un triangle.
  • La moyenne géométrique est toujours inférieure ou égale à la moyenne arithmétique.
  • La moyenne arithmétique est représentée par la formule suivante A= 1naii=1n.
  • La moyenne géométrique est plus couramment utilisée lorsqu'il existe une sorte de corrélation entre l'ensemble des nombres. Par exemple, lors du calcul des taux d'intérêt.









How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Table of Contents

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image