What is Investigating Produit scalaire?

AI Summary

Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.

Get started for free
  • Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by

    Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 26.05.2023. Last updated: 09.05.2023.

Tu sais peut-être comment additionner des vecteurs, mais sais-tu comment les multiplier ? Nous pouvons multiplier les vecteurs de deux façons : le produit vectoriel et le produit scalaire. Dans ce résumé de cours, nous détaillerons à quoi sert le produit scalaire de deux vecteurs, avant de donner sa formule. Par la suite, nous expliquerons la signification d'un produit scalaire nul et comment calculer l'angle entre deux vecteurs avec le produit scalaire. Enfin, nous donnons quelques exercices d'entraînement.

À quoi sert le produit scalaire ?

Le produit scalaire sert à manipuler des vecteurs. En particulier, le produit scalaire est utile pour :

  • calculer l'angle entre deux vecteurs ;

  • déterminer certaines grandeurs physiques, comme le travail d'une force ;

  • résoudre certaines inéquations.


Le produit scalaire est également important pour définir certains concepts des mathématiques avancées. Ces concepts nous permettent de résoudre des équations à dérivées partielles et de manipuler les grandeurs en mécanique quantique.

Produit scalaire : formule

Il y a deux formules élémentaires pour le produit scalaire qui sont couramment utilisées. Considérons les vecteurs \(\vec{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}\). Une première formule pour le produit scalaire est \(\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y\). 


De façon analogue, si nous avions des vecteurs en trois dimensions, la formule pour le produit scalaire serait plutôt \(\vec{u} \cdot \vec{v} = u_x v_x + v_x v_y + u_z v_z\).

L'autre formule pour le produit scalaire est donnée en termes des normes des vecteurs et l'angle entre ceux-ci. Soient \(\lVert \vec{u} \rVert\) et \(\lVert \vec{v} \rVert\) les normes des vecteurs \(\vec{u}\) et \(\vec{v}\). Soit \(\theta\) l'angle entre ces derniers. Le produit scalaire est donné par la formule \(\vec{u} \cdot \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \cos \theta \).


Voyons alors un exemple de comment calculer un produit scalaire. 

Comment calculer un produit scalaire ?

Pour calculer un produit scalaire, il faut appliquer la bonne formule en fonction des données que nous avons. Autrement dit, si nous avons les composantes des vecteurs, nous utiliserons la formule \(\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y\). Si nous connaissons plutôt les normes et l'angle entre eux, nous utiliserons \(\vec{u} \cdot \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \cos \theta \).


Nous utilisons plus souvent la première formule.


Peux-tu calculer le produit scalaire des vecteurs \(\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}\) ?


\(\vec{u} \cdot \vec{v} = 2 \times -1  +  1 \times 3 = 1\)

Produit scalaire dans l'espace

Pour calculer un produit scalaire dans l'espace, nous utiliserons la formule \(\vec{u} \cdot \vec{v} = u_x v_x + v_x v_y + u_z v_z\). Garde à l'esprit que la formule \(\vec{u} \cdot \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \cos \theta \) reste valable pour les vecteurs dans l'espace.


Peux-tu déterminer le produit scalaire des vecteurs \(\vec{u} = \begin{pmatrix}  1 \\ 1 \\ -1 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}\) ?


\(\vec{u} \cdot \vec{v} = 1 \times -1  +  1 \times 2 + -1 \times 1 = 0\)


Le produit scalaire dans l'exemple précédent est égal à \(0\). Il s'agit d'un produit scalaire nul et possède une signification importante.

Produit scalaire nul

Un produit scalaire nul signifie que les vecteurs sont perpendiculaires, c'est-à-dire, que l'angle entre eux est \(90\)°. Cela suppose qu'aucun des vecteurs n'est le vecteur nul. Un produit scalaire nul est la caractéristique définitoire des vecteurs orthogonaux.

Vecteurs orthogonaux

Deux vecteurs sont orthogonaux s'ils ont un produit scalaire nul.


Es-tu capable de déterminer si les vecteurs \(\vec{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}\) sont orthogonaux ?


Pour déterminer s'il s'agit de vecteurs orthogonaux, il faut calculer le produit scalaire et voir s'il est nul.


\(\vec{u} \cdot \vec{v} = 2 \times 6 + 4 \times -3 = 0\)


Comme leur produit scalaire est nul, ces vecteurs sont orthogonaux.

Angle entre deux vecteurs

L'angle entre deux vecteurs peut être déterminé avec leur produit scalaire. Pour calculer l'angle entre deux vecteurs \(\vec{u}\) et \(\vec{v}\), il faut :

  • calculer le produit scalaire des deux vecteurs avec leurs coordonnées ;

  • déterminer les normes des vecteurs avec la formule \(\lVert \vec{u} \rVert = \sqrt{u_x^2 + u_y^2}\) ;

  • appliquer la formule \(\theta = \arccos \left( \frac{\vec{u} \cdot \vec{v}}{\lVert \vec{u} \rVert \lVert \vec{v} \rVert} \right)\).


Peux-tu calculer l'angle entre les vecteurs \(\vec{u} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\) ?


D'abord, il faut calculer le produit scalaire de ces vecteurs : \(\vec{u} \cdot \vec{v} = 1 \times 2 + 4 \times 3 = 14\).


Ensuite, nous devons calculer les normes des vecteurs.


\(\lVert \vec{u} \rVert = \sqrt{1^2 + 4^2} = \sqrt{17}\)

\(\lVert \vec{v} \rVert = \sqrt{2^2 + 3^2} = \sqrt{13}\)


Appliquons alors la formule pour l'angle entre deux vecteurs.


\(\theta = \arccos \left( \frac{14}{\sqrt{17} \sqrt{13}} \right) = 69{,}9\)


L'angle entre les deux vecteurs est donc \(69{,}9\)°.

Exercices avec le produit scalaire

Les exercices suivants te permettront de maîtriser la notion du produit scalaire et d'apprendre à utiliser les diverses formules présentées ici.


1. Calcule le produit scalaire des vecteurs \(\vec{u} = \begin{pmatrix} 7 \\ -3 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\).


2. Calcule le produit scalaire de vecteurs ayant des longueurs respectives de \(3\) et \(4\), avec un angle de \(60\) degrés entre eux.


3. Démontre, pour un vecteur \(\vec{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix}\), que \(\lVert \vec{u} \rVert = \sqrt{\vec{u} \cdot \vec{u}}\).


4. Les vecteurs \(\vec{u} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}\) et \(\vec{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}\) sont-ils perpendiculaires ?


5. Détermine \(x\) tel que les vecteurs \(\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 0 \\ x \end{pmatrix}\) soient perpendiculaires.


6. Quelle est la mesure de l'angle entre les vecteurs \(\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}\) ?


Produit scalaire - Points clés

  • Le produit scalaire sert à différentes choses, notamment le calcul de l'angle entre deux vecteurs.
  • Lorsque nous disposons des composantes des vecteurs, nous utiliserons la formule \(\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z\) pour calculer le produit scalaire.
  • Si nous connaissons les normes et l'angle entre deux vecteurs \(\vec{u} \cdot \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \cos \theta \).
  • Lorsque le produit scalaire est nulles vecteurs sont perpendiculaires.
  • L'angle entre deux vecteurs se calcule avec la formule \(\theta = \arccos \left( \frac{\vec{u} \cdot \vec{v}}{\lVert \vec{u} \rVert \lVert \vec{v} \rVert} \right)\).

How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Table of Contents

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image