Produit vectoriel

Tu sais déjà peut-être comment fonctionne le produit scalaire de deux vecteurs. Or, le produit vectoriel de deux vecteurs est un concept un peu différent. Dans ce résumé de cours, nous expliquerons d'abord ce qu'est le produit vectoriel de deux vecteurs. Ensuite, nous donnerons la formule du produit vectoriel et un exemple de comment faire le calcul du produit vectoriel. Nous détaillerons ensuite le lien entre le produit vectoriel et le sinus, avant de terminer sur des concepts avancés : le double produit vectoriel et le produit mixte.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Produit vectoriel

  • Temps de lecture: 5 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Produit vectoriel de deux vecteurs

    Le produit vectoriel de deux vecteurs est une façon précise de les multiplier. Il s'appelle le produit « vectoriel » car son résultat est un vecteur, à l'opposé du produit « scalaire » dont le résultat est un scalaire. Le produit vectoriel de deux vecteurs \(\vec{u}\) et \(\vec{v}\) se note \(\vec{u} \wedge \vec{v}\) ou \(\vec{u} \times \vec{v}\).

    Il y a de nombreuses applications du produit vectoriel, notamment en physique où il est utilisé pour calculer certaines grandeurs. Il est particulièrement utile en dans le domaine de l'électromagnétisme.

    Formule du produit vectoriel

    Si nous avons deux vecteurs \(\vec{u} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}\), la formule du produit vectoriel est donnée par \[\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \] Pour te rappeler de cette formule tu peux également considérer le produit vectoriel comme étant le déterminant de la matrice suivante : \[\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \] où \(\hat{i}, \hat{j}, \hat{k} \) sont les vecteurs de la base.

    Calcul du produit vectoriel

    Pour effectuer le calcul du produit vectoriel, il faut identifier les composantes des vecteurs à multiplier et à appliquer la formule. Comme cette formule peut paraître complexe à premier abord, il est nécessaire de pratiquer en faisant beaucoup d'exercices.

    Garde à l'esprit que le produit vectoriel ne s'applique qu'aux vecteurs de dimension 3.

    Peux-tu calculer le produit vectoriel de \(\vec{u} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}\) ?

    \(\vec{u} \wedge \vec{v} = \begin{pmatrix} 4 \times (-2) - 3 \times 1 \\ 3 \times 2 - (-1) \times (-2) \\ (-1) \times 1 - 4 \times 2 \end{pmatrix} \)

    \(\vec{u} \wedge \vec{v} = \begin{pmatrix} -11 \\ 4 \\ -9 \end{pmatrix} \)

    Si tu te sens à l'aise avec les déterminants des matrices, tu peux également utiliser l'autre formule donnée, mais cela revient au même calcul. Ce n'est qu'une formulation qui t'aidera à te souvenir de la formule.

    Produit vectoriel et le sinus

    Il existe une formule qui relie le produit vectoriel et le sinus. Considérons les vecteurs \(\vec{u}\) et \(\vec{v}\) de norme \(\lVert \vec{u} \rVert\) et \(\lVert \vec{v} \rVert\). De plus, notons \(\theta\) l'angle entre ces vecteurs et \(\hat{n}\) le vecteur unitaire perpendiculaire au plan où se trouvent \(\vec{u}\) et \(\vec{v}\). Le produit vectoriel et le sinus sont reliés par cette relation : \( \vec{u} \wedge \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin (\theta) \hat{n}\).

    Peux-tu calculer le sinus de l'angle entre les vecteurs \(\vec{u} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}\) en utilisant le produit vectoriel ?

    D'après l'exemple précédent, le produit vectoriel de ces vecteurs est \( \begin{pmatrix} 11 \\ 4 \\ -9 \end{pmatrix} \).

    Les normes de ces vecteurs sont :

    \(\lVert \vec{u} \rVert = \sqrt{{-1}^2 + 4^2 + 3^2} = 5.1\)

    \(\lVert \vec{v} \rVert = \sqrt{2^2 + 1^2 + {(-2)}^2} = 3\)

    Cette formule peut servir à calculer l'angle entre les vecteurs, mais aussi pour déterminer la direction du produit vectoriel. Pour des applications en physique, il est souvent intéressant de connaître la direction de la grandeur vectorielle.

    Double produit vectoriel

    Le double produit vectoriel permet de calculer un produit vectoriel effectué deux fois. La formule du double produit vectoriel est \(\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}\). Cette formule servira plutôt à dériver d'autres formules concernant le produit vectoriel.

    Produit mixte

    Le produit mixte de trois vecteurs implique le produit scalaire et le produit vectoriel à la fois. Il est donné par la formule \([\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \ \vec{w}\). Si le produit mixte est nul, alors les vecteurs sont coplanaires, et vice-versa.

    Produit vectoriel - Points clés

    • Le produit vectoriel de deux vecteurs \(\vec{u}\) et \(\vec{v}\) se note \(\vec{u} \wedge \vec{v}\) ou \(\vec{u} \times \vec{v}\).
    • La formule du produit vectoriel est donnée par \[\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \]
    • Le produit vectoriel et le sinus sont reliés par la relation \( \vec{u} \wedge \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin (\theta) \hat{n}\).
    • La formule du double produit vectoriel est \(\vec{u} \wedge (\vec{v} \wedge \vec{u}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}\).
    • Le produit mixte de trois vecteurs est \([\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \ \vec{w}\).
    Questions fréquemment posées en Produit vectoriel

    Comment on calcule le produit vectoriel ?

    Pour calculer le produit vectoriel, nous utilisons une des formules suivantes :  \(\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \) ou \( \vec{u} \wedge \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin (\theta) \hat{n}\).

    Qu'est-ce que le produit vectoriel de deux vecteurs ?

    Le produit vectoriel de deux vecteurs est une façon précise de les multiplier. Il s'appelle le produit « vectoriel » car son résultat est un vecteur, à l'opposé du produit « scalaire » dont le résultat est un scalaire. 

    Quand utilise-t-on le produit vectoriel ?

    Nous utilisons le produit vectoriel pour calculer certaines grandeurs en physique et pour vérifier la coplanarité de vecteurs.

    Quand est-ce que le produit vectoriel est nul ?

    Le produit vectoriel est nul si les vecteurs sont parallèles ou antiparallèles.

    Quand deux vecteurs sont colinéaires ? 

    Deux vecteurs sont colinéaires quand l'un est un multiple de l'autre. C'est le cas quand le produit vectoriel est nul, ou quand le produit vectoriel est 1 ou -1.

    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Le produit vectoriel peut également s'écrire sous forme de déterminant.

    Nous pouvons calculer le produit vectoriel en n'importe quelle dimension.

    Si le produit mixte de trois vecteurs est nul, alors les vecteurs sont coplanaires.

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 5 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !