• Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by

    Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 26.05.2023. Last updated: 26.05.2023.

Tu sais déjà peut-être comment fonctionne le produit scalaire de deux vecteurs. Or, le produit vectoriel de deux vecteurs est un concept un peu différent. Dans ce résumé de cours, nous expliquerons d'abord ce qu'est le produit vectoriel de deux vecteurs. Ensuite, nous donnerons la formule du produit vectoriel et un exemple de comment faire le calcul du produit vectoriel. Nous détaillerons ensuite le lien entre le produit vectoriel et le sinus, avant de terminer sur des concepts avancés : le double produit vectoriel et le produit mixte.

Produit vectoriel de deux vecteurs

Le produit vectoriel de deux vecteurs est une façon précise de les multiplier. Il s'appelle le produit « vectoriel » car son résultat est un vecteur, à l'opposé du produit « scalaire » dont le résultat est un scalaire. Le produit vectoriel de deux vecteurs \(\vec{u}\) et \(\vec{v}\) se note \(\vec{u} \wedge \vec{v}\) ou \(\vec{u} \times \vec{v}\).


Il y a de nombreuses applications du produit vectoriel, notamment en physique où il est utilisé pour calculer certaines grandeurs. Il est particulièrement utile en dans le domaine de l'électromagnétisme. 

Formule du produit vectoriel

Si nous avons deux vecteurs \(\vec{u} = \begin{pmatrix} u_x \\ u_y \\ u_z  \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z  \end{pmatrix}\), la formule du produit vectoriel est donnée par \[\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \] Pour te rappeler de cette formule tu peux également considérer le produit vectoriel comme étant le déterminant de la matrice suivante : \[\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} \] où \(\hat{i}, \hat{j}, \hat{k} \) sont les vecteurs de la base.

Calcul du produit vectoriel

Pour effectuer le calcul du produit vectoriel, il faut identifier les composantes des vecteurs à multiplier et à appliquer la formule. Comme cette formule peut paraître complexe à premier abord, il est nécessaire de pratiquer en faisant beaucoup d'exercices.


Garde à l'esprit que le produit vectoriel ne s'applique qu'aux vecteurs de dimension 3.


Peux-tu calculer le produit vectoriel de \(\vec{u} = \begin{pmatrix} -1 \\ 4 \\ 3  \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -2  \end{pmatrix}\) ?


\(\vec{u} \wedge \vec{v} = \begin{pmatrix} 4 \times (-2) - 3 \times 1 \\ 3 \times 2 - (-1) \times (-2) \\ (-1) \times 1 - 4 \times 2 \end{pmatrix} \)


\(\vec{u} \wedge \vec{v} = \begin{pmatrix} -11 \\ 4 \\ -9 \end{pmatrix} \)


Si tu te sens à l'aise avec les déterminants des matrices, tu peux également utiliser l'autre formule donnée, mais cela revient au même calcul. Ce n'est qu'une formulation qui t'aidera à te souvenir de la formule.

Produit vectoriel et le sinus

Il existe une formule qui relie le produit vectoriel et le sinus. Considérons les vecteurs \(\vec{u}\) et \(\vec{v}\) de norme \(\lVert \vec{u} \rVert\) et \(\lVert \vec{v} \rVert\). De plus, notons \(\theta\) l'angle entre ces vecteurs et \(\hat{n}\) le vecteur unitaire perpendiculaire au plan où se trouvent \(\vec{u}\) et \(\vec{v}\). Le produit vectoriel et le sinus sont reliés par cette relation : \( \vec{u} \wedge \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin (\theta) \hat{n}\).


Peux-tu calculer le sinus de l'angle entre les vecteurs \(\vec{u} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}\) et \(\vec{v} = \begin{pmatrix} 2 \\ 1 \\ -2  \end{pmatrix}\) en utilisant le produit vectoriel ?


D'après l'exemple précédent, le produit vectoriel de ces vecteurs est \( \begin{pmatrix} 11 \\ 4 \\ -9 \end{pmatrix} \). 


Les normes de ces vecteurs sont :


\(\lVert \vec{u} \rVert = \sqrt{{-1}^2 + 4^2 + 3^2} = 5.1\)


\(\lVert \vec{v} \rVert = \sqrt{2^2 + 1^2 + {(-2)}^2} = 3\)


Cette formule peut servir à calculer l'angle entre les vecteurs, mais aussi pour déterminer la direction du produit vectoriel. Pour des applications en physique, il est souvent intéressant de connaître la direction de la grandeur vectorielle.

Double produit vectoriel

Le double produit vectoriel permet de calculer un produit vectoriel effectué deux fois. La formule du double produit vectoriel est \(\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}\). Cette formule servira plutôt à dériver d'autres formules concernant le produit vectoriel.

Produit mixte

Le produit mixte de trois vecteurs implique le produit scalaire et le produit vectoriel à la fois. Il est donné par la formule \([\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \ \vec{w}\). Si le produit mixte est nul, alors les vecteurs sont coplanaires, et vice-versa.


Produit vectoriel - Points clés

  • Le produit vectoriel de deux vecteurs \(\vec{u}\) et \(\vec{v}\) se note \(\vec{u} \wedge \vec{v}\) ou \(\vec{u} \times \vec{v}\).
  •  La formule du produit vectoriel est donnée par \[\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \] 
  • Le produit vectoriel et le sinus sont reliés par la relation \( \vec{u} \wedge \vec{v} = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin (\theta) \hat{n}\).
  • La formule du double produit vectoriel est \(\vec{u} \wedge (\vec{v} \wedge \vec{u}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w}\).
  • Le produit mixte de trois vecteurs est \([\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \ \vec{w}\).  

How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Table of Contents

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image