What is Investigating Surface des sphères?

AI Summary

Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.

Get started for free

Access relevant flashcards for Investigating Photosynthesis

Start learning
Deprecated: strtotime(): Passing null to parameter #1 ($datetime) of type string is deprecated in /var/www/html/web/app/themes/studypress-core-theme/template-parts/API/explanations/minimal-design/main-content.php on line 24
  • Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by

    Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 24.06.2024. Last updated: 01.01.1970.

Pense à un ballon de football. Pense à un globe terrestre. Ce sont des objets ronds à trois dimensions, dont la forme est connue sous le nom de sphère. Dans cet article, nous allons voir comment déterminer la surface d'une sphère.


Tout d'abord, visualisons les composants d'une sphère. Considère des cercles congruents dans l'espace tridimensionnel qui ont tous le même point pour centre. Ensemble, ces cercles forment une sphère. Tous les points de la surface de la sphère sont à égale distance de son centre. Cette distance est le rayon de la sphère.

Dans l'espace, une sphère est le lieu de tous les points qui se trouvent à une distance donnée d'un point donné appelé son centre.

Formule de calcul de la surface des sphères

Supposons maintenant que tu tiennes dans ta main une boule parfaitement sphérique et que tu veuilles l'envelopper étroitement dans du papier. La surface de la sphère peut être considérée comme la quantité minimale de papier qui serait nécessaire pour recouvrir complètement sa surface. En d'autres termes, la surface de la sphère est l'espace qui couvre la surface de la forme, mesurée en unités carrées (c'est-à-direm2, ft2, etc.).


Considère la sphère suivante de rayon r :


Surface des sphères Sphère de rayon r - StudySmarterSurface d'une sphère - StudySmarter Originals


La surface, S, de la sphère de rayon, r, est donnée par la formule suivante :


S = 4πr2

Calcul de la surface des sphères de diamètre.

Suppose qu'au lieu du rayon, on te donne le diamètre de la sphère. Puisque le diamètre est deux fois plus long que le rayon, nous pouvons simplement substituer la valeur r = d/2 dans la formule ci-dessus. Ce qui donne :


S = 4πr2 =4π(d/2)2 =4π (d²/4) =πd²


La surface S d'une sphère de diamètre d est donc de :


S = πd2

Les grands cercles et la surface des sphères

Lorsqu'un plan coupe une sphère de manière à contenir le centre de la sphère, l'intersection est appelée un grand cercle. En effet, un grand cercle est un cercle contenu dans la sphère dont le rayon est égal au rayon de la sphère. Un grand cercle sépare une sphère en deux moitiés congruentes, chacune appelée hémisphère.


Par exemple, si la forme de la Terre est approximativement sphérique, on peut dire que l'équateur est un grand cercle parce qu'il passe par le centre et sépare (approximativement) la Terre en deux moitiés.

Exemples utilisant la formule de la surface d'une sphère

Voyons quelques exemples liés à la surface des sphères.

Trouve la surface d'une sphère de 5 pieds de rayon.


Solution :


S = 4πr2=4×π×52=314.29 ft2


Trouve la surface d'une sphère étant donné que l'aire de son grand cercle est de 35 unités carrées.


Solution :


Surface de la sphère = 4πr2

Surface du grand cercle = πr2

On nous donne

πr2 = 35

Surface de la sphère = 4πr2

= 4 × 35

= 140 unités carrées


La surface d'une sphère est de 616 pi2. Trouve son rayon.


Solution :


S = 4πr2616 = 4×π×r2r2=6164×πr=49=7


Note : Le rayon doit être une valeur positive, nous savons donc que -7 n'est pas la solution.


Surface des sphères - Principaux enseignements

  • Dans l'espace, une sphère est le lieu de tous les points qui se trouvent à une distance donnée d'un point donné appelé son centre.
  • La surface S d'une sphère de rayon r est donnée par la formule suivante :
    S = 4πr².
  • Lorsqu'un plan coupe une sphère de manière à contenir le centre de la sphère, l'intersection est appelée un grand cercle.

How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Table of Contents

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image