Trouver des contenus d'apprentissage
Fonctionnalités
Découvrir
Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeContent creation by StudySmarter Biology Team.
Sources verified by Gabriel Freitas.
Quality reviewed by Gabriel Freitas.
Published: 18.06.2024.
Last updated: 01.01.1970.
Les algorithmes récursifs sont un concept fondamental en informatique, conçus pour résoudre des problèmes en appelant une fonction à l'intérieur d'elle-même jusqu'à ce qu'une condition spécifiée soit remplie. Ces algorithmes sont essentiels pour mettre en œuvre des solutions plus propres et plus efficaces pour des tâches telles que le tri, la recherche et la traversée de structures de données comme les arbres et les graphes. En décomposant les problèmes complexes en cas plus simples ou de base, les algorithmes récursifs permettent aux élèves de mieux comprendre la pensée algorithmique et les techniques de résolution de problèmes.
Les algorithmesa> récursifs sont un concept fondamental en informatique et en mathématiques, offrant une approche directe pour résoudre les problèmes en les décomposant en versions plus simples et plus faciles à gérer du même problème. Cette méthode permet non seulement de simplifier le processus de codage, mais aussi d'améliorer la lisibilité et l'efficacité des programmes.
Algorithme récursif : Processus dans lequel une fonction s'appelle elle-même en tant que sous-programme. Cette technique permet à la fonction d'exploiter les solutions à des instances plus petites du même problème, résolvant ainsi le problème par la répétition jusqu'à ce qu'une condition de base soit remplie.
Au cœur des algorithmes récursifs se trouve le concept de décomposition d'un problème en problèmes plus petits et identiques jusqu'à ce qu'un point soit atteint où le problème ne peut plus être divisé. Ce point est connu sous le nom de cas de base. La solution du cas de base est ensuite utilisée pour résoudre progressivement chacun des problèmes plus importants jusqu'à ce que le problème d'origine soit résolu.
Exemple :
Code pour calculer la factorielle d'un nombre en utilisant la récursivité :def factorial(n) : if n == 1 : return 1 else : return n * factorial(n-1)Cet extrait de code python montre une fonction factorielle qui s'appelle elle-même pour calculer la factorielle d'un nombre. Le cas de base est celui où
n
est égal à 1. La récursivité s'arrête alors. Le principe qui sous-tend les algorithmes récursifs est à la fois simple et puissant, car il permet de résoudre un problème complexe en résolvant des instances plus petites de ce problème. Les éléments clés de tout algorithme récursif sont le cas de base, le processus de décomposition du problème et l'appel récursif. La compréhension de ces éléments peut améliorer considérablement ton approche non seulement de la programmation, mais aussi de la résolution de problèmes dans divers domaines.
N'oublie pas que chaque fonction récursive doit avoir un cas de base pour éviter la récursion infinie.
Efficacité de la récursivité :Bien que la récursivité offre une solution propre et élégante à de nombreux problèmes, il est important de tenir compte de son efficacité et de l'utilisation de la pile. Les appels récursifs consomment de la mémoire, et une profondeur de récursion excessive peut entraîner une erreur de dépassement de pile. Par conséquent, lors de la conception d'un algorithme récursif, il est crucial d'évaluer les compromis entre simplicité et performance.
Les algorithmes récursifs jouent un rôle central dans le domaine des mathématiques discrètes, en fournissant des solutions efficaces à des problèmes complexes grâce au principe de récursivité. Dans cette section, nous explorons quelques algorithmes récursifs importants qui sont fondamentaux dans les mathématiques théoriques et appliquées.
La recherche binaire est un exemple classique de la façon dont la récursivité peut être appliquée pour réduire la complexité temporelle des algorithmes de recherche. L'essence de la recherche binaire est de diviser pour mieux régner ; en divisant récursivement un tableau trié et en se concentrant sur le segment qui pourrait contenir la valeur cible.
def binary_search(arr, low, high, key) : if high >= low : mid = (high + low) // 2 if arr[mid] == key : return mid elif arr[mid] > key : return binary_search(arr, low, mid - 1, key) else : return binary_search(arr, mid + 1, high, key) else : return -1Dans cet exemple de code Python, la fonction
binary_search
recherche de manière récursive une clé dans le segment du tableau arr
délimité par low
et high
. Grâce aux appels récursifs, l'intervalle de recherche est divisé par deux à chaque fois, ce qui entraîne une complexité temporelle logarithmique de \(O\(\log n\)\). Pour éviter un débordement de la pile, assure-toi que le tableau est trié avant d'utiliser une recherche binaire récursive.
Le tri par fusion, autre pierre angulaire des algorithmes récursifs, utilise une stratégie de division et de conquête pour trier un tableau. En divisant le tableau en fragments de plus en plus petits, en triant ces fragments, puis en les fusionnant, le tri par fusion atteint une efficacité optimale, en particulier dans les grands ensembles de données.
def merge_sort(arr) : if len(arr) > 1 : mid = len(arr)//2 L = arr[:mid] R = arr[mid :] merge_sort(L) merge_sort(R) i = j = k = 0 while i < len(L) and j < len(R) : if L[i] < R[j] : arr[k] = L[i] i += 1 else :arr
[k] = R[j] j += 1 k += 1 while i < len(L) : arr[k] = L[i] i += 1 k += 1 while j < len(R) : arr[k] = R[j] j += 1 k += 1Ce code Python démontre le fonctionnement de
merge_sort
. Le tableau est divisé en moitiés gauche(L
) et droite(R
) jusqu'à ce que les tableaux ne puissent plus être divisés, après quoi ces fragments sont fusionnés de manière triée, ce qui permet d'obtenir un tableau trié. La complexité temporelle du tri par fusion est de \(O\(n \log n\)\). Le tri par fusion est très efficace pour les grands tableaux, mais il nécessite de l'espace supplémentaire pour la fusion.
Les permutations font référence aux différents arrangements d'un ensemble d'éléments. Les algorithmes récursifs permettant de générer des permutations illustrent la souplesse et l'adaptabilité de la récursivité dans la résolution des problèmes combinatoires.
def permute(a, l, r) : if l==r : print(a) else : for i in range(l, r+1) : a[l], a[i] = a[i], a[l] permute(a, l+1, r) a[l], a[i] = a[i], a[l] # backtrackCette fonction Python
permute
génère toutes les permutations possibles d'un tableau a
en permutant les éléments entre les positions l
et r.
Il s'agit d'un exemple de technique de retour en arrière, où l'algorithme explore toutes les dispositions potentielles et "revient en arrière" pour s'assurer que toutes les permutations sont prises en compte. L'efficacité de cette approche dépend de la longueur du tableau, la complexité augmentant de façon exponentielle avec la taille du tableau. Comprendre et mettre en œuvre des algorithmes récursifs est une compétence essentielle dans divers domaines informatiques et mathématiques. Il s'agit de définir une solution à un problème en fonction d'une instance plus petite du même problème. Cette approche permet de simplifier considérablement les problèmes complexes. Cependant, l'écriture de ton premier algorithme récursif peut souvent sembler décourageante en raison de sa nature abstraite.Tu trouveras ici des conseils simples pour débuter avec les algorithmes récursifs, des astuces pour le débogage et des conseils sur les cas où il est le plus approprié d'utiliser la récursivité pour résoudre des problèmes.
Pour commencer avec les algorithmes récursifs, il est essentiel de comprendre deux éléments principaux : le cas de base et le cas récursif. Le cas de base dicte quand la récursion doit s'arrêter, évitant ainsi les boucles infinies, tandis que le cas récursif fait évoluer le problème vers le cas de base. Voici un modèle de base à suivre pour structurer ta fonction récursive :
def recursive_function(arguments) : if base_case_condition : return base_case_result else : return recursive_function(modified_arguments)
Commence toujours par définir clairement le cas de base de ton algorithme récursif.
Exemple : Écriture d'une fonction récursive pour calculer le nième nombre de Fibonacci :
def fibonacci(n) : if n == 0 or n == 1 : return n else : return fibonacci(n-1) + fibonacci(n-2)Cette fonction démontre une récursivité simple, les cas de base étant lorsque
n est
0 ou 1. L'étape récursive ajoute les deux nombres précédents de la séquence pour trouver le nombre suivant. Le débogage des algorithmes récursifs peut s'avérer difficile en raison de leur nature autoréférentielle. Cependant, l'utilisation de stratégies systématiques peut simplifier le processus :
Limiter la taille du problème peut aider à isoler plus efficacement les problèmes des algorithmes récursifs.
Décider quand utiliser la récursivité est essentiel pour résoudre efficacement les problèmes de programmation et de mathématiques. Les approches récursives sont particulièrement adaptées aux :
Les algorithmes récursifs et itératifs sont deux approches fondamentales de la résolution de problèmes en informatique et en mathématiques, chacune ayant des caractéristiques et des applications uniques.
Les algorithmes récursifs résolvent les problèmes en s'appelant eux-mêmes avec un sous-ensemble plus petit du problème original jusqu'à ce qu'un cas de base soit atteint. À l'inverse, les algorithmes itératifs utilisent des boucles pour répéter des étapes jusqu'à ce qu'une condition soit remplie.Principales différences :
Le choix entre la récursion et l'itération dépend de plusieurs facteurs, notamment la nature du problème, la lisibilité et les exigences en matière d'efficacité.Les considérations comprennent :
Le calcul factoriel et les nombres de Fibonacci sont des exemples classiques où la récursivité peut être appliquée de manière intuitive.
Malgré sa surcharge de mémoire, la récursivité offre des solutions élégantes dans de nombreuses applications réelles, notamment lorsqu'il s'agit de traiter des structures de données hiérarchiques et de résoudre des problèmes complexes dont les solutions peuvent être exprimées en termes de versions plus simples du même problème.Applications :
Récursion ou itération dans les entretiens de codage :Dans les entretiens de codage, ton choix entre la récursion et l'itération peut mettre en évidence tes compétences en matière de résolution de problèmes et ta compréhension de l'efficacité algorithmique. La récursivité peut impressionner par sa solution élégante à un problème complexe, mais la prise de conscience de ses implications en termes de mémoire et la capacité à la remanier en une solution itérative si nécessaire peuvent être tout aussi convaincantes. Les recruteurs cherchent souvent à comprendre les deux paradigmes pour évaluer la flexibilité d'un candidat dans la résolution des problèmes.
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!