Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeContent creation by StudySmarter Biology Team.
Published: 24.06.2024. Last updated: 01.01.1970.
Examinons le cercle unitaire, comment en construire un et à quoi il sert en mathématiques.
Le cercle unitaire a un rayon de 1 et son centre est situé à l'origine (0,0). La formule du cercle unitaire est donc la suivante
Cette formule est ensuite utilisée comme base en trigonométrie pour trouver les fonctions trigonométriques et dériver les identités de Pythagore.
Le cercle des unités
Nous pouvons utiliser ce cercle pour calculer les valeurs sin, cos et tan d'un angle 𝜃 compris entre 0 ° et 360 ° ou 0 et 2𝜋 Radians.
Sin, cos et tan sur le cercle unitaire
Pour tout point situé sur la circonférence du cercle unitaire, la coordonnée x sera sa valeur cos, et la coordonnée y sera la valeur sin. Par conséquent, le cercle unitaire peut nous aider à trouver les valeurs des fonctions trigonométriques sin, cos et tan pour certains points. Nous pouvons dessiner le cercle unitaire pour les angles les plus courants afin de trouver leurs valeurs sin et cos.
Le cercle des unités Image : domaine public
Le cercle unité a quatre quadrants : les quatre régions (en haut à droite, en haut à gauche, en bas à droite, en bas à gauche) du cercle. Comme tu peux le voir, chaque quadrant a les mêmes valeurs de sin et de cos, mais avec des signes différents.
Voyons comment ces valeurs sont calculées. Nous savons que lorsque 𝜃 = 0 °, sin𝜃 = 0 et cos𝜃 = 1. Dans notre cercle unitaire, un angle de 0 ressemblerait à une ligne droite horizontale :
Le cercle unitaire pour 𝜃 = 0
Par conséquent, comme sin𝜃 = 0 et cos𝜃 = 1, l'axe des abscisses doit correspondre à cos𝜃 et l'axe des ordonnées à sin𝜃. Nous pouvons vérifier cela pour une autre valeur. Considérons 𝜃 = 90 ° ou 𝜋 / 2.
Le cercle unitaire pour 𝜃 = 90
Dans ce cas, nous avons une droite verticale dans le cercle. Nous savons que pour 𝜃 = 90 °, sin 𝜃 = 1 et cos 𝜃 = 0. Cela correspond à ce que nous avons trouvé plus tôt : sin 𝜃 est sur l'axe des y, et cos 𝜃 est sur l'axe des x. Nous pouvons également trouver tan 𝜃 sur le cercle unitaire. La valeur de tan 𝜃 correspond à la longueur de la ligne qui va du point de la circonférence à l'axe des x. Rappelle-toi également que tan𝜃 = sin𝜃 / cos𝜃.
D'après le théorème de Pythagore, nous savons que pour un triangle rectangle . Si nous devions construire un triangle à angle droit dans un cercle unitaire, il ressemblerait à ceci :
Le cercle unitaire avec sin et cos
Donc a et b sont sin𝜃, et cos𝜃 et c vaut 1. On peut donc dire : ce qui est la première identité pythagoricienne.
Le cercle unitaire a un rayon de 1 et un centre à l'origine.
La formule du cercle unitaire est la suivante .
Le cercle unité peut être utilisé pour trouver les valeurs sin et cos des angles compris entre 0 ° et 360 ° ou entre 0 et 2𝜋 Radians.
La coordonnée x des points sur la circonférence du cercle unitaire représente la valeur cos de cet angle, et la coordonnée y est la valeur sin.
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!