Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeQu'est-ce que 5 choose 0 ?
Qu'est-ce que 6 choisir 6 ?
Lequel de ces énoncés est le développement correct de \((x^2-y)^2\) ?
Étant donné que le coefficient de \(x^2\) dans l'expansion de \((1+ax)^7\) est \(525\), trouve les valeurs possibles de \(a\).
Laquelle de ces réponses est équivalente à \N(n!\N)\N(n!\N) ?
Lequel de ces énoncés est le développement correct de \(6 choisir 2\) ?
Comment lis-tu la notation \(n \choose k\) ?
Que signifie la notation \(n\choose k\) ?
Content creation by StudySmarter Biology Team.
Published: 24.06.2024. Last updated: 01.01.1970.
Une expansion binomiale est une méthode utilisée pour nous permettre de développer et de simplifier des expressions algébriques de la forme \( (x+y)^n\) en une somme de termes de la forme \(ax^by^c\). Si \N(n\N) est un nombre entier, \N(b\N) et \N(c\N) seront également des nombres entiers, et \N(b + c = n\N).
Nous pouvons développer les expressionsa> de la forme \N( (x+y)^n\N) en multipliant chaque parenthèse, mais cela peut être très long et fastidieux pour des valeurs élevées de \N(n\N) comme dans \N( (x+y)^{20}\N) par exemple. C'est là que l'utilisation du théorème binomial s'avère utile.
Le théorème binomial nous permet de développer une expression de la forme \ ( (x+y)^n\) en une somme. La formule générale d'une expression binomiale est la suivante :
\[ (x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0y^n.\]
Ce qui peut être simplifié à :
\[ \big{align} (x+y)^n &= \sum\limites_{k=0}^n \binom{n}{k} x^{n-k}y^k \\N &= \sum\limites_{k=0}^n \binom{n}{k} x^ky^{n-k} . \N- [Fin{align}\N]
Où \(n\N) et \N(k\N) sont tous deux des nombres entiers. Cette formule est également connue sous le nom de formule binomiale. La notation
\N[ \Nbinom{n}{k}\N]]
peut être appelée "\N(n\N) choisit \N(k\N)" et donne un nombre appelé coefficient binomial qui est le nombre de combinaisons différentes d'ordonner \N(k\N) objets sur un total de \N(n\N) objets. L'équation du coefficient binomial (\N(n\N) choisit \N(k\N) ou \N(^nC_r\N) sur une calculatrice) est donnée par :
\[ \binom{n}{k} = \frac{n!}{k !(n-k)!}\]
Où " ! " signifie factorielle. La factorielle est le produit d'un nombre entier par tous les nombres entiers qui lui sont inférieurs. Par exemple, pour \(5\) choisir \(3\), nous aurions :
\[ \begin{align} \n-binom{5}{3} &= \frac{5!}{3 !(5-3)!} \N- &= \frac{5\cdot 4\cdot 3 \cdot 2 \cdot 1}{(3\cdot 2\cdot 1)(2\cdot 1)} \N- &= 10. \N- [end{align}\N]
Pour comprendre comment faire une expansion binomiale, nous allons prendre un exemple. Disons que nous voulons développer \( (x+y)^4\). Dans ce cas, \N(n = 4\N) et \N(k\N) varieront entre \N(0\N) et \N(4\N). En utilisant la formule de l'expansion binomiale, nous pouvons écrire :
\[ (x+y)^4 = \binom{4}{0}x^4y^0 + \binom{4}{1}x^3y^1 + \binom{4}{2}x^2y^2 + \binom{4}{3}x^1y^3+\binom{4}{4}x^0y^4.\].
Nous pouvons maintenant utiliser l'équation du coefficient binomial pour trouver tous les termes constants de cette expression. Pour le premier terme, nous avons :
\[ \begin{align} \binom{4}{0} &= \frac{4!}{0 !(4-0)!} \N- &= \frac{4 \cdot 3\cdot 2\cdot 1}{1\cdot (4 \cdot 3\cdot 2\cdot 1 )} \N- &= 1. \N-END{align} \]
En répétant cette opération pour les cinq coefficients, nous obtenons des coefficients binomiaux de \(1\), \(4\), \(6\), \(4\), \(1\) dans l'ordre. Par conséquent, notre expression pour l'expansion binomiale se simplifie à :
\N[ x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\N].
Note que \(y\) pourrait également être remplacé par n'importe quel nombre.
Pour résumer l'explication ci-dessus, la formule d'expansion peut être écrite comme suit :
\[(x+y)^n = \sum _{k=0}^{n} \binom{n}{k}x^{n-k}y^k = \sum _{k=0}^{n} \binom{n}{k}x^{k}y^{n-k}\]
Où \(\binom{n}{k}\) est le coefficient binomial de chaque terme.
Tu rencontreras parfois des expressions algébriques où n n'est pas un entier positif mais un entier négatif ou une fraction. Considérons l'expression \(\sqrt{1-2x}\) qui peut également s'écrire comme suit
\[ (1- 2x)^\dfrac{1}{2} \] où \(x < 0,5\). Dans ce cas, il devient difficile de trouver la formule permettant de trouver les coefficients binomiaux,
parce que nous ne pouvons pas trouver les factorielles pour un nombre négatif ou rationnel. Cependant, si nous examinons un exemple pour un nombre entier positif, nous pouvons trouver une expression plus générale que nous pouvons ensuite appliquer aux nombres négatifs et fractionnaires. Par exemple pour
\[ \Nbinom{6}{3}\N]
nous avons
\[ \begin{align} \binom{6}{3}&= \frac{6!}{3!(6-3)!} \N- &= \frac{6\cdot 5\cdot 4}{3!} \N- &= \Nfrac{6(6-1)(6-2)}{3!}. \[end{align}\N-]
A partir de là, nous observons que
\[ \Nbinom{n}{k} = \Nfrac{n(n-1)(n-2)(n-3)\Npoints (n-k+1)}{k!} \N]
et donc l'expression plus générale du théorème binomial est la formule infinie
\[ (a+b)^n = \frac{a^n}{0!} + \frac{na^{n-1}b}{1!} + \frac{n(n-1)a^{n-2}b^2}{2!} + \frac{n(n-1)(n-2)a^{n-3}b^3}{3!} + \dots \]
Examinons \(\sqrt{1-2x}\). Dans ce cas, \(a = -2x\), \(b = 1\) et \(n =1/2\). En substituant cela, nous obtenons :
\[ \begin{align} \frac{(-2x)^\frac{1}{2}}{0!} &+ \frac{\left(-\frac{1}{2}\right) (-2x)^{-\frac{1}{2}}\cdot 1 }{1!} \\N- &\Nquad + \Nfrac{\Ngauche(-\Nfrac{1}{2}\Ndroite) \Ngauche(-\Nfrac{1}{2}\Ndroite) (-2x)^{-\Nfrac{3}{2}}\Ncdot 1^2 }{2!} \\N- &\Nquad + \Nfrac{\Nà gauche(-\Nfrac{1}{2}\Ndroite) \Nà gauche(-\Nfrac{1}{2}\Ndroite) \Nà gauche(-\Nfrac{3}{2}\Ndroite) (-2x)^{-\Nfrac{5}{2}}\Ncdot 1^3 }{3!} + \dots \end{align}\]
En utilisant l'expansion de Mac Laurin, nous pouvons dire que l'expression ci-dessus converge vers
\[ \sqrt{1-2x} = 1 - x - \frac{x^2}{2} - \frac{x^3}{2}.\]
Nous avons rassemblé quelques questions avec des solutions étape par étape pour t'aider à comprendre comment le théorème binomial et l'expansion binomiale peuvent être appliqués ou faire l'objet d'une question lors d'un examen.
Exercice 1
Développe \((x + 2)^4\) en utilisant le théorème binomial.
Solution :
En utilisant le théorème binomial, nous avons :
\((x + 2)^4 = \binom{4}{0}x^4(2)^0 + \binom {4}{1}x^3(2)^1 + \binom{4}{2}x^2(2)^2 + \binom{4}{3}x(2)^3 + \binom{4}{4}(2)^4\).
En évaluant les coefficients, on obtient :
\((x + 2)^4 = x^4 + 8x^3 + 24x^2 + 32x + 16\)
Par conséquent, \((x + 2)^4\) se développe en \(x^4 + 8x^3 + 24x^2 + 32x + 16\).
Exercice 2
Trouve le coefficient de \(x^3\) dans le développement de \((2x + 1)^5\).
Solution :
En utilisant le théorème binomial, le développement de \((2x + 1)^5\) est :
\((2x + 1)^5 = \binom{5}{0}(2x)^0(1)^5 + \binom{5}{1}(2x)^1(1)^4 + \binom{5}{2}(2x)^2(1)^3 + \binom{5}{3}(2x)^3(1)^2 + \binom{5}{4}(2x)^4(1)^1 + \binom{5}{5}(2x)^5(1)^0\).
Pour trouver le coefficient de \(x^3\), nous devons examiner le terme avec \((2x)^3\) :
\N(\Nbinom{5}{3}(2x)^3(1)^2 = 10(2x)^3\N)
En évaluant le terme, on obtient :
\(10(2x)^3 = 80x^3\)
Par conséquent, le coefficient de \(x^3\) dans l'expansion de \((2x + 1)^5\) est 80.
Exercice 3
Trouve les trois premiers termes du développement de \((1 - 3x)^6\).
Solution :
En utilisant le théorème binomial, le développement de \((1 - 3x)^6\) est :
\((1 - 3x)^6 = \binom{6}{0}(1)^6(-3x)^0 + \binom{6}{1}(1)^5(-3x)^1 + \binom{6}{2}(1)^4(-3x)^2 + ...\).
Pour trouver les trois premiers termes, nous devons évaluer les termes avec \((1)^6, (1)^5, \text{and}). \space (1)^4\) :
\(\binom {6}{0}(1)^6(-3x)^0 = 1\)
\(\binom{6}{1}(1)^5(-3x)^1 = -18x\)
\(\binom{6}{2}(1)^4(-3x)^2 = 162x^2\)
Par conséquent, les trois premiers termes de l'expansion de \((1 - 3x)^6\) sont \(1, -18x, \text{and } 162x^2\).
La formule du développement binomial est la suivante :
\[ (x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0y^n].
Pour résoudre un développement binomial avec des exposants négatifs ou fractionnaires, nous utilisons :
\[ (1+a)^n = 1 + na+ \frac{n(n-1)}{2!}a^2 + \frac{n(n-1)(n-2)}{3!}a^3 + \dots \].
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!