Deprecated: strtotime(): Passing null to parameter #1 ($datetime) of type string is deprecated in /var/www/html/web/app/themes/studypress-core-theme/template-parts/API/explanations/minimal-design/main-content.php on line 24
  • Content creation by StudySmarter Biology Team.

  • Gabriel Freitas's avatar

    Sources verified by

    Gabriel Freitas.

    Quality reviewed by Gabriel Freitas.

  • Published: 24.06.2024. Last updated: 01.01.1970.

Une expansion binomiale est une méthode utilisée pour nous permettre de développer et de simplifier des expressions algébriques de la forme \( (x+y)^n\) en une somme de termes de la forme \(ax^by^c\). Si \N(n\N) est un nombre entier, \N(b\N) et \N(c\N) seront également des nombres entiers, et \N(b + c = n\N).

Nous pouvons développer les expressionsa> de la forme \N( (x+y)^n\N) en multipliant chaque parenthèse, mais cela peut être très long et fastidieux pour des valeurs élevées de \N(n\N) comme dans \N( (x+y)^{20}\N) par exemple. C'est que l'utilisation du théorème binomial s'avère utile.

Le théorème binomial

Le théorème binomial nous permet de développer une expression de la forme \ ( (x+y)^n\) en une somme. La formule générale d'une expression binomiale est la suivante :

\[ (x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0y^n.\]

Ce qui peut être simplifié à :

\[ \big{align} (x+y)^n &= \sum\limites_{k=0}^n \binom{n}{k} x^{n-k}y^k \\N &= \sum\limites_{k=0}^n \binom{n}{k} x^ky^{n-k} . \N- [Fin{align}\N]


Où \(n\N) et \N(k\N) sont tous deux des nombres entiers. Cette formule est également connue sous le nom de formule binomiale. La notation

\N[ \Nbinom{n}{k}\N]]

peut être appelée "\N(n\N) choisit \N(k\N)" et donne un nombre appelé coefficient binomial qui est le nombre de combinaisons différentes d'ordonner \N(k\N) objets sur un total de \N(n\N) objets. L'équation du coefficient binomial (\N(n\N) choisit \N(k\N) ou \N(^nC_r\N) sur une calculatrice) est donnée par :

\[ \binom{n}{k} = \frac{n!}{k !(n-k)!}\]

Où " ! " signifie factorielle. La factorielle est le produit d'un nombre entier par tous les nombres entiers qui lui sont inférieurs. Par exemple, pour \(5\) choisir \(3\), nous aurions :

\[ \begin{align} \n-binom{5}{3} &= \frac{5!}{3 !(5-3)!} \N- &= \frac{5\cdot 4\cdot 3 \cdot 2 \cdot 1}{(3\cdot 2\cdot 1)(2\cdot 1)} \N- &= 10. \N- [end{align}\N]

Comment fais-tu un développement binomial ?

Pour comprendre comment faire une expansion binomiale, nous allons prendre un exemple. Disons que nous voulons développer \( (x+y)^4\). Dans ce cas, \N(n = 4\N) et \N(k\N) varieront entre \N(0\N) et \N(4\N). En utilisant la formule de l'expansion binomiale, nous pouvons écrire :

\[ (x+y)^4 = \binom{4}{0}x^4y^0 + \binom{4}{1}x^3y^1 + \binom{4}{2}x^2y^2 + \binom{4}{3}x^1y^3+\binom{4}{4}x^0y^4.\].

Nous pouvons maintenant utiliser l'équation du coefficient binomial pour trouver tous les termes constants de cette expression. Pour le premier terme, nous avons :

\[ \begin{align} \binom{4}{0} &= \frac{4!}{0 !(4-0)!} \N- &= \frac{4 \cdot 3\cdot 2\cdot 1}{1\cdot (4 \cdot 3\cdot 2\cdot 1 )} \N- &= 1. \N-END{align} \]

En répétant cette opération pour les cinq coefficients, nous obtenons des coefficients binomiaux de \(1\), \(4\), \(6\), \(4\), \(1\) dans l'ordre. Par conséquent, notre expression pour l'expansion binomiale se simplifie à :

\N[ x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\N].

Note que \(y\) pourrait également être remplacé par n'importe quel nombre.

Formule d'expansion binomiale

Pour résumer l'explication ci-dessus, la formule d'expansion peut être écrite comme suit :

\[(x+y)^n = \sum _{k=0}^{n} \binom{n}{k}x^{n-k}y^k = \sum _{k=0}^{n} \binom{n}{k}x^{k}y^{n-k}\]

Où \(\binom{n}{k}\) est le coefficient binomial de chaque terme.

Développement binomial pour les puissances fractionnaires et négatives

Tu rencontreras parfois des expressions algébriques où n n'est pas un entier positif mais un entier négatif ou une fraction. Considérons l'expression \(\sqrt{1-2x}\) qui peut également s'écrire comme suit

\[ (1- 2x)^\dfrac{1}{2} \] où \(x < 0,5\). Dans ce cas, il devient difficile de trouver la formule permettant de trouver les coefficients binomiaux,

parce que nous ne pouvons pas trouver les factorielles pour un nombre négatif ou rationnel. Cependant, si nous examinons un exemple pour un nombre entier positif, nous pouvons trouver une expression plus générale que nous pouvons ensuite appliquer aux nombres négatifs et fractionnaires. Par exemple pour

\[ \Nbinom{6}{3}\N]

nous avons

\[ \begin{align} \binom{6}{3}&= \frac{6!}{3!(6-3)!} \N- &= \frac{6\cdot 5\cdot 4}{3!} \N- &= \Nfrac{6(6-1)(6-2)}{3!}. \[end{align}\N-]


A partir de là, nous observons que

\[ \Nbinom{n}{k} = \Nfrac{n(n-1)(n-2)(n-3)\Npoints (n-k+1)}{k!} \N]

et donc l'expression plus générale du théorème binomial est la formule infinie

\[ (a+b)^n = \frac{a^n}{0!} + \frac{na^{n-1}b}{1!} + \frac{n(n-1)a^{n-2}b^2}{2!} + \frac{n(n-1)(n-2)a^{n-3}b^3}{3!} + \dots \]


Examinons \(\sqrt{1-2x}\). Dans ce cas, \(a = -2x\), \(b = 1\) et \(n =1/2\). En substituant cela, nous obtenons :

\[ \begin{align} \frac{(-2x)^\frac{1}{2}}{0!} &+ \frac{\left(-\frac{1}{2}\right) (-2x)^{-\frac{1}{2}}\cdot 1 }{1!} \\N- &\Nquad + \Nfrac{\Ngauche(-\Nfrac{1}{2}\Ndroite) \Ngauche(-\Nfrac{1}{2}\Ndroite) (-2x)^{-\Nfrac{3}{2}}\Ncdot 1^2 }{2!} \\N- &\Nquad + \Nfrac{\Nà gauche(-\Nfrac{1}{2}\Ndroite) \Nà gauche(-\Nfrac{1}{2}\Ndroite) \Nà gauche(-\Nfrac{3}{2}\Ndroite) (-2x)^{-\Nfrac{5}{2}}\Ncdot 1^3 }{3!} + \dots \end{align}\]



En utilisant l'expansion de Mac Laurin, nous pouvons dire que l'expression ci-dessus converge vers

\[ \sqrt{1-2x} = 1 - x - \frac{x^2}{2} - \frac{x^3}{2}.\]


Questions sur l'expansion binomiale

Nous avons rassemblé quelques questions avec des solutions étape par étape pour t'aider à comprendre comment le théorème binomial et l'expansion binomiale peuvent être appliqués ou faire l'objet d'une question lors d'un examen.


Exercice 1


Développe \((x + 2)^4\) en utilisant le théorème binomial.


Solution :

En utilisant le théorème binomial, nous avons :


\((x + 2)^4 = \binom{4}{0}x^4(2)^0 + \binom {4}{1}x^3(2)^1 + \binom{4}{2}x^2(2)^2 + \binom{4}{3}x(2)^3 + \binom{4}{4}(2)^4\).


En évaluant les coefficients, on obtient :


\((x + 2)^4 = x^4 + 8x^3 + 24x^2 + 32x + 16\)


Par conséquent, \((x + 2)^4\) se développe en \(x^4 + 8x^3 + 24x^2 + 32x + 16\).


Exercice 2

Trouve le coefficient de \(x^3\) dans le développement de \((2x + 1)^5\).


Solution :

En utilisant le théorème binomial, le développement de \((2x + 1)^5\) est :


\((2x + 1)^5 = \binom{5}{0}(2x)^0(1)^5 + \binom{5}{1}(2x)^1(1)^4 + \binom{5}{2}(2x)^2(1)^3 + \binom{5}{3}(2x)^3(1)^2 + \binom{5}{4}(2x)^4(1)^1 + \binom{5}{5}(2x)^5(1)^0\).


Pour trouver le coefficient de \(x^3\), nous devons examiner le terme avec \((2x)^3\) :


\N(\Nbinom{5}{3}(2x)^3(1)^2 = 10(2x)^3\N)


En évaluant le terme, on obtient :


\(10(2x)^3 = 80x^3\)


Par conséquent, le coefficient de \(x^3\) dans l'expansion de \((2x + 1)^5\) est 80.


Exercice 3

Trouve les trois premiers termes du développement de \((1 - 3x)^6\).


Solution :

En utilisant le théorème binomial, le développement de \((1 - 3x)^6\) est :


\((1 - 3x)^6 = \binom{6}{0}(1)^6(-3x)^0 + \binom{6}{1}(1)^5(-3x)^1 + \binom{6}{2}(1)^4(-3x)^2 + ...\).


Pour trouver les trois premiers termes, nous devons évaluer les termes avec \((1)^6, (1)^5, \text{and}). \space (1)^4\) :


\(\binom {6}{0}(1)^6(-3x)^0 = 1\)

\(\binom{6}{1}(1)^5(-3x)^1 = -18x\)

\(\binom{6}{2}(1)^4(-3x)^2 = 162x^2\)


Par conséquent, les trois premiers termes de l'expansion de \((1 - 3x)^6\) sont \(1, -18x, \text{and } 162x^2\).



L'expansion binomiale - Principaux points à retenir

  • Un développement binomial nous aide à simplifier les expressions algébriques en une somme
  • La formule du développement binomial est la suivante :

    \[ (x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0y^n].

  • Les coefficients binomiaux ou les termes constants de cette expression sont trouvés en utilisant :
    \[ \binom{n}{k} = \frac{n!}{k !(n-k)!}\]
  • \[ (1+a)^n = 1 + na+ \frac{n(n-1)}{2!}a^2 + \frac{n(n-1)(n-2)}{3!}a^3 + \dots \].

How we ensure our content is accurate and trustworthy

At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

Content Quality Monitored by:

Creator Avatar

Gabriel Freitas

AI Engineer at StudySmarter

Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

Go beyond learning with StudySmarter

Explore jobs and companies

Explore thousands of jobs and companies.

Land your dream job
Find degree and university

Find a degree & university that meets your goals.

Find opportunities
Logo

About StudySmarter

StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.

Table of Contents

Sign up for our free learning platform!

Access subjects, mock exams, and features to revise more efficiently. All 100% free!

Get your free account!
Cta Image