Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeContent creation by StudySmarter Biology Team.
Published: 24.06.2024. Last updated: 01.01.1970.
À ce jour, tu as probablement rencontré beaucoup de matériel vectoriel et tu t'es demandé comment les principes théoriques tels que la multiplication par points se rapportent à la vie réelle. C'est là que le triple produit scalaire entre en jeu. Ce produit offre un moyen facile de trouver les volumes de certaines formes complexes grâce à une combinaison de principes théoriques vus précédemment.
Cet article montrera comment nous pouvons prendre des vecteurs et les appliquer à un contexte physique.
Le triple produit scalaire est un principe que nous utilisons pour trouver le volume d'un parallélépipède - une forme à 6 côtés où chaque côté est un parallélogramme ou un tétraèdre.
Le triple produit scalaire implique en fait deux opérations vectorielles vues précédemment - la multiplication par points et la multiplication en croix.
La multiplication croisée de deux vecteurs donne une quantité vectorielle, mais la multiplication par points qui suit pour trouver le produit scalaire réduit les vecteurs à une valeur scalaire.
C'est ainsi que nous pouvons calculer le volume des formes nommées ci-dessus à partir de trois vecteurs - nous obtenons un seul nombre à la fin du processus.
Tu peux te rappeler la définition d'une quantité vectorielle comme suit.
Une quantité vectorielle est représentée en termes de \(x,y,z\) et, en tant que telle, elle a trois composantes. Les vecteurs ont également une magnitude et une direction définies.
La définition d'une quantité scalaire est la suivante.
Une quantité scalaire est une valeur singulière qui n'a qu'une magnitude. Elle n'a pas de direction.
Nous savons que les vecteurs peuvent être utilisés pour décrire le mouvement et qu'ils se présentent généralement sous la forme d'un mouvement dans les directions \N(x,\Ny,\Nz). Sous forme de vecteur, ces directions deviennent respectivement \(\vec{i},\, \vec{j},\, \vec{k}\) et avec cette notation, nous pouvons effectuer de nombreuses opérations sur les vecteurs.
Pour trouver le triple produit scalaire de trois vecteurs, tu dois connaître le principe des produits en points et en croix et leur fonctionnement. Si ce n'est pas le cas, tu peux consulter nos articles sur les produits scalaires et les produits vectoriels pour te rafraîchir la mémoire.
Le triple produit scalaire consiste à trouver le produit en points d'un vecteur avec le produit en croix de deux vecteurs. Il s'agit d'une méthodologie plus complexe que le produit de deux points, mais elle est utile pour trouver les volumes de certaines formes.
Nous commençons par trouver le produit vectoriel des deux premiers vecteurs. On obtient ainsi un vecteur qui sera utilisé dans le produit vectoriel avec le troisième vecteur. Et cela donnera une valeur scalaire.
Considérons trois vecteurs \(\vec{a}\), \(\vec{b}\) et \(\vec{c}\), où,\[\vec{a}=a_1\vec{i}+a_2\vec{j}+a_3\vec{k},\]\[\vec{b}=b_1\vec{i}+b_2\vec{j}+b_3\vec{k},\] and \[\vec{c}=c_1\vec{i}+c_2\vec{j}+c_3\vec{k}.\Pour trouver le triple produit scalaire de ces vecteurs, nous devons trouver le produit en croix de deux d'entre eux et trouver le produit en points de ce résultat avec le troisième vecteur. En notation mathématique, cela donne,\N[\Nvec{a}\cdot (\Nvec{b}\contre\c{c}).\NLa valeur absolue de cette formule nous donne le volume d'un parallélépipède.
Pour le volume d'un tétraèdre, la formule à appliquer est \(\frac{1}{6}\left[|\vec{a}\cdot (\vec{b}\times\c{c})|{right]\) lorsque les vecteurs décrivent trois côtés non coplanaires de la forme.
Grâce au produit vectoriel, nous savons que le produit en croix de \(\vec{b}\times \vec{c}\) est donné par \[\c{b}\times \vec{c}=(b_2c_3-b_3c_2)\vec{i}-(b_1c_3-b_3c_1)\vec{j}+(b_1c_2-b_2c_1)\vec{k}.\Si nous considérons ensuite le produit scalaire du résultat du produit vectoriel et du vecteur \(\vec{a}\), nous obtenons la formule du triple produit scalaire,\[\vec{a}\cdot (\vec{b}\times\vec{c})=a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1).\]
Comme indiqué précédemment, le triple produit scalaire est utilisé pour trouver le volume d'un parallélépipède, mais qu'est-ce que cela signifie réellement ?
Si nous considérons les vecteurs \(\vec{a}\), \(\vec{b}\) et \(\vec{c}\) comme trois côtés non parallèles d'un parallélépipède, nous pouvons utiliser la formule du triple produit scalaire pour obtenir le résultat du volume de la forme.
Lorsque nous cherchons à trouver le volume de formes, l'ordre dans lequel nous appliquons ces vecteurs n'a pas d'importance tant que le processus est cyclique. This means:\[\vec{a}\cdot (\vec{b}\times\vec{c})=\vec{b}\cdot (\vec{c}\times\vec{a})=\vec{c}\cdot (\vec{a}\times\vec{b}).\]
Prenons un exemple.
Montre que \(\vec{a}\cdot (\vec{b}\times\c{c})=\vec{b}\cdot (\vec{c}\times\c{a})\) en utilisant les vecteurs ci-dessous,
\[\vec{a}=5\vec{i}+2\vec{j}+6\vec{k},\]\[\vec{b}=-2\vec{i}+17\vec{j}+1\vec{k},\] and \[\vec{c}=8\vec{i}-5\vec{j}+13\vec{k}.\]
Solution
En utilisant notre formule générale pour \(\vec{a}\cdot (\vec{b}\times\vec{c})\),
\[\begin{align}\vec{a}\cdot (\vec{b}\times\vec{c})&=a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)\\&=5[(17\cdot13)-(1\cdot-5)]+2[(1\cdot8)-(-2\cdot13)]\\ & \qquad +6[(-2\cdot-5)-(17\cdot8)]\\&=5(226)+2(34)+6(-126)\\&=1130+68-756\\&=442.\N- [end{align}\N]
Nous pouvons alors utiliser à nouveau la formule générale pour \N(\Nvec{b}\Ncdot (\Nvec{c}\Ntime\Nvec{a})\N), en déplaçant les lettres - là où il y avait \N(a's\N), il y aura maintenant \N(b's\N), \N(b's\N) sera remplacé par \N(c's\N) et \N(c's\N) sera remplacé par \N(a's\N)-. Cela prendra la forme suivante : \[\combinaison (\c{c}\time\c{a})&=b_1(c_2a_3-c_3a_2)+b_2(c_3a_1-c_1a_3)+b_3(c_1a_2-c_2a_1)\combinaison&] =-2[(-5c}\combinaison (\c{c}\combinaison)].=-2[(-5\cdot6)-(13\cdot2)]+17[(13\cdot5)-(8\cdot6)]\\& \qquad+1[(8\cdot2)-(-5\cdot5)]\\&=-2(-56)+17(17)+1(41)\\&=112+289+41\\&=442.\N- [end{align}\N]
Comme tu peux le voir, les nombres qui traversent le processus changent, mais comme le processus est cyclique, le résultat final est le même.
Ainsi, \[\vec{a}\cdot (\vec{b}\time\c{c})=\vec{b}\cdot (\vec{c}\time\c{a}).\N- \N- \N- \N- \N- \N- \N- \N- \N- \N-]
Il existe une autre propriété du produit triple scalaire qui n'a pas encore été abordée - classons nos trois vecteurs dans une matrice \(3 fois 3\),\[\i1&a_2&a_3\b_1&b_2&b_3\c_1&c_2&c_3\end{bmatrix}\i].
Si tu développes la matrice ci-dessus, tu devrais obtenir le triple produit scalaire. Voyons comment !
\N- [\N- Début{alignement} \begin{bmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{bmatrix} &=a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)&=\vec{a}\cdot (\vec{b}\times\vec{c}) \end{align}\]
Le triple produit scalaire est identique au déterminant de cette matrice. Pour savoir pourquoi, consulte notre article sur les déterminants des matrices.
Ce qu'il faut retenir ici, c'est que les mineurs et l'expansion du déterminant d'une matrice \(3 fois 3\) reflètent la formule du triple produit scalaire, ce qui te permettra peut-être de te souvenir plus facilement du processus.
Prenons un exemple pour trouver le triple produit scalaire en développant le déterminant.
Trouve le volume du parallélépipède formé par les arêtes coïncidentes données par les vecteurs : \[\vec{a}=3\vec{i}-1\vec{j}-2\vec{k},\] \[\vec{b}=\vec{i}+3\vec{j}-2\vec{k},\] et \[\vec{c}=6\vec{i}-2\vec{j}+\vec{k}.\]
Solution
Pour trouver le volume du parallélépipède, tu dois trouver le triple produit scalaire. Tu trouveras ici le triple produit scalaire par la méthode du déterminant.
\N- [\N- Début{align} \begin{bmatrix}3&-1&-2\\1&3&-2\\6&-2&1\end{bmatrix} &=3(3\cdot1-(-2)\cdot(-2))+1(1\cdot1-(-2)\cdot6)\\&-2(1\cdot(-2)-3\cdot6)&= 3(3-4)+1(1+12)-2(-2-18)&=3(-1)+1(13)-2(-20)& =50 \mbox{ units}^3 . \N- [end{align}\N]
Ainsi, le volume du parallélépipède formé par les bords coterminés des vecteurs donnés est \(50 \mbox{ unités}^3\).
Remarque que même si tu obtiens un déterminant négatif, tu dois prendre le module du triple produit scalaire pour obtenir le volume.
De plus, il existe de nombreuses autres propriétés des produits triples scalaires qui dépassent le cadre des cours de mathématiques complémentaires.
Commençons par examiner un exemple dans lequel nous devons trouver le volume d'un parallélépipède.
Trouve le volume du parallélépipède dont les trois côtés non parallèles sont décrits par les vecteurs,\[\vec{a}=2\vec{i}+1\vec{j}-1\vec{k},\]\[\vec{b}=-5\vec{i}+14\vec{j}-7\vec{k},\] and \[\vec{c}=16\vec{i}-3\vec{j}+12\vec{k}.\]
Solution
Nous savons que le volume d'un parallélépipède est égal à \(|\vec{a}\cdot(\vec{b}\times\c{c})|\N). Par conséquent :\[\begin{align}\mbox{Volume}&=|\vec{a}\cdot(\vec{b}\times\vec{c})|\\&=|a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)|\\&=|2[(14\cdot12)-(-7\cdot-3)]+1[(-7\cdot16)-(-5\cdot12)]\\N- &\N- \Nquad +(-1)[(-5\cdot-3)-(14\cdot16)]|\N&=451 \mbox{ unités}^3.\N-END{align}\N-]
Voyons maintenant un exemple dans lequel nous devons trouver le volume d'un tétraèdre.
Trouve le volume du tétraèdre dont les trois côtés non coplanaires sont décrits par les vecteurs, \[\vec{a}=-4\vec{i}+12\vec{j}+2\vec{k},\]\[\vec{b}=3\vec{i}+1\vec{j}-1\vec{k},\] and \[\vec{c}=4\vec{i}+3\vec{j}+2\vec{k}.\]
Solution
Nous savons que le volume d'un tétraèdre est égal à \(\frac{1}{6}\cdot[\gauche|\vec{a}\cdot(\vec{b}\times\c{c})\cdroite|\cdroite]\c}). Therefore,\[\begin{align}\mbox{Volume}&=\frac{1}{6}\left[\left|\vec{a}\cdot(\vec{b}\times\vec{c})\right|\right]\\&=\frac{1}{6}\bigg[\left|a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)\right|\bigg]\\&=\frac{1}{6}\bigg[|(-4)[(1\cdot2)-(-1\cdot3)]+12[(-1\cdot4)-(3\cdot2)]\bigg.\\ \bigg. &\quad \quad +2[(3\cdot3)-(1\cdot4)]|\bigg]\\&=\frac{1}{6}\bigg[\left | -4(5)+12(-10)+2(5)\right |\bigg]\\&=\frac{1}{6}\cdot130\\&=\frac{65}{3} \mbox{ unités}^3.\Nend{align}\N]
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!