Imagine une usine où le travail doit être effectué par un certain nombre de personnes et où un calendrier doit être respecté. Il y a un délai maximum à respecter et il ne faut pas que trop d'ouvriers travaillent dessus, sinon ce ne sera pas rentable.
Cette situation donne une vague idée de la façon dont deux quantités différentes sont liées l'une à l'autre et, à l'aide de ces informations, de nombreux scénarios du monde réel peuvent être abordés de façon appropriée.
Les proportions de deux quantités peuvent être explicitement déterminées en observant la relation entre les quantités. Ces quantités peuvent être liées l'une à l'autre de différentes façons, mais dans le cadre de cet article, nous nous concentrerons sur les proportions les plus élémentaires : Les proportions directes et inverses.
Signification des proportions directes et inverses
Signification de la proportion directe
Soit deux quantités qui dépendent l'une de l'autre de telle sorte que lorsque l'une d'elles varie, l'autre varie au même rythme.
Deux quantités sont directement proportionnelles l'une à l'autre si et seulement si elles dépendent linéairement l'une de l'autre et que le rapport entre elles est une constante.
Supposons que les deux quantités soient la taille d'un lit et l'autre le coût de sa fabrication. Lorsque la taille du lit augmente, le coût de sa fabrication augmente également de façon constante.
Supposons que le coût d'un lit de 4 mètres carrés soit de 400 $, de 8 mètres carrés de 800 $, de 16 mètres carrés de 1600 $, et ainsi de suite. On dit que ces deux quantités sontdirectement proportionnelles.
Signification de la proportion inverse
Deux quantités sont inversement proportionnelles si nous augmentons l'une d'entre elles et que l'autre diminue proportionnellement. C'est la raison exacte pour laquelle le mot "inverse" est utilisé, pour désigner la relation inverse entre elles.
Deux quantités sont inversementproportionnelles si et seulement si lorsque l'une augmente, l'autre diminue et vice versa.
Un exemple typique de ces deux quantités dans le monde réel serait la croissance de la population de bactéries en fonction du temps.
Un autre exemple serait celui des travailleurs nécessaires pour accomplir une tâche ; plus il y a de travailleurs, moins le temps nécessaire est long.
Formule des proportions directes et inverses
Formule des proportions directes
On dit que deux quantités sont directement proportionnelles si une quantité augmente, l'autre quantité augmente, et si une quantité diminue, l'autre quantité diminue. En notation mathématique, pour deux quantités x et y, la proportionnalité directe entre x et y s'exprime comme suit
où le symbole indique la proportionnalité entre les deux quantités.
La proportionnalité dénote que les quantités sont linéairement liées. Mais pour résoudre les équations et les propriétés de ces équations, nous avons besoin d'un signe '=' et de remplacer le symbole de proportionnalité.
Par conséquent, nous avons l'équivalence suivante, est identique à où k est une constante à valeur réelle non nulle.
En d'autres termes, nous avons pour une constante non nulle à valeur réelle k,
.
Encuentra materiales de estudio relevantes y prepárate para el día del examen
Nous remarquons que l'équation est représentée par une droite qui passe par l'origine (puisque les deux ordonnées sont 0).
Si nous réarrangeons l'équation en fonction de y , nous obtenons et la pente peut être lue comme suit .
Nous pouvons donc établir différentes proportions à partir d'une donnée et les convertir en équation à l'aide d'une constante de proportionnalité. N'oublie pas que la constante de proportionnalité peut être n'importe quel nombre réel, il n'est pas nécessaire que ce soit un nombre positif.
Nous avons vu que deux quantités sont directement proportionnelles, donc si nous en changeons une, l'autre change aussi en conséquence et le taux de changement est constant. Ce taux de changement est k et il est également connu sous le nom de gradient de la courbe x=ky.
Únete a tus amigos y haz que estudiar sea divertido
On peut également tracer le graphique en calculant les asymptotes horizontales et verticales, qui ne sont autres que les axes eux-mêmes.
Dans le graphique, nous avons supposé que la constante k était positive. Pour un k négatif, le graphique sera reflété le long de l'axe des y comme suit,
Envie de voir ce contenu et d’autres visuels trop cools?
Les asymptotes verticales et horizontales restent toujours les mêmes. Les propriétés des deux graphiques restent les mêmes : lorsque nous augmentons une variable, l'autre diminue et lorsqu'une variable diminue, l'autre augmente.
Comment résoudre les proportions directes et inverses ?
Comment résoudre les proportions directes ?
Pour résoudre une proportionnalité directe à partir d'un ensemble de données donné, nous gardons à l'esprit les étapes suivantes,
Étape 1. Convertir la proportionnalité en une équation grâce à une constante de proportionnalité,
Étape 2. En utilisant les données données, détermine la valeur de la constante de proportionnalité :.
Étape 3. Remplace k par l'équation originale, et la proportionnalité est maintenant résolue :, où kest maintenant connu.
Mantente organizado y enfocado con tu lista de tareas inteligente
Pour résoudre une proportionnalité inverse à partir d'un ensemble de données donné, nous gardons à l'esprit les étapes suivantes,
Étape 1 : Convertir la proportionnalité en une équation par le biais d'une constante de proportionnalité :
Étape 2 : À l'aide des données données, détermine la valeur de la constante de proportionnalité : .
Étape 3 : Remets k dans l'équation originale, et la proportionnalité est maintenant résolue : , où k est maintenant connu.
Voyons quelques exemples de proportions directes et inverses.
Exemples de proportions directes et inverses
Un bus se déplace à une vitesse de 40 km/h. Nous supposons que la vitesse est constante tout au long du trajet.
(i) Trouve la distance parcourue par le bus au cours des 30 premières minutes.
(ii) Trouve le temps nécessaire au bus pour parcourir une distance de 240 km.
Solution
Le bus se déplace à une vitesse constante, ce qui implique que la distance parcourue est uniforme pour un intervalle de temps donné.
Ainsi, la distance parcourue est directement proportionnelle au temps nécessaire pour parcourir cette distance.
Soit t le temps mis et d la distance parcourue, notre proportionnalité est donc ,
En convertissant cela en une équation, nous obtenons
En réarrangeant l'équation, nous obtenons
Mais le rapport entre la distance et le temps est défini comme la vitesse, donc la constante kest la vitesse elle-même, donc
(i) Ainsi, pourtrouver la distance parcourue en 30 min=0,5 heure, il suffit de substituer t=0,5 heure à l'équation ci-dessus,
La distance parcourue par le bus en 30 minutes est donc de 20 km.
(ii) Pour trouver le temps nécessaire pour parcourir 240 km, en remplaçant d=240 km, on obtient
Par conséquent, le temps nécessaire pour parcourir 240 km est de 6 heures.
Ce problème aurait pu être résolu simplement en utilisant la formule de la vitesse, mais ici, nous le résolvons à partir de la base, en utilisant le concept des proportions.
Le coût de 2 kilogrammes de pommes est de 4 $. Trouve le coût de 7 kilogrammes de pommes.
Solution
Soit xle poids des pommes et yle coût des pommes.
Plus le poids de la pomme augmente, plus son coût augmente. Le poids et le coût des pommes sont donc linéairement proportionnels, ce qui nous permet d'utiliser la formule suivante,
où kest la constante de proportionnalité. En introduisant les valeurs qui nous sont données, nous obtenons
En isolant k, nous obtenons
Cela nous donne l'équation dont nous avons besoin,
Ensuite, pour trouver le coût de 7 kilogrammes de pommes, nous remplaçons x par 7 pour obtenir ,
Ainsi, le coût de 7 kilogrammes de pommes est de 14 $.
Pour un gaz idéal à température constante, la pression qui lui est appliquée est inversement proportionnelle au volume occupé par le gaz.
Lors d'une expérience, on observe qu'à une pression de 10 bars, le volume du gaz est de 3 mètres cubes. Quel sera son volume lorsque celle-ci sera de 5 mètres cubes ?
Solution
Soit P et V qui désignent respectivement la pression et le volume du gaz. On sait qu'ils sont inversement proportionnels, ce qui donne ,
où k est une constante.
En remplaçant P=10 et V=3, on obtient
,
ce qui nous donne l'équation,
Ensuite, on nous demande de trouver la pression lorsque le volume est de 5m3, ce qui donne ,
Par conséquent, la pression du gaz occupant 5m3 de volume est de 6 bars.
Dans une usine de fabrication de smartphones, 10 ouvriers peuvent assembler un téléphone en 6 heures.
Combien de travailleurs seront nécessaires pour assembler le téléphone en 4 heures ?
Solution
Intuitivement, nous pouvons en déduire que plus le nombre d'ouvriers augmentera, plus le temps nécessaire pour assembler le téléphone diminuera. Il s'agit donc d'une proportionnalité inverse.
Si w représente le nombre de travailleurs nécessaires pour assembler 1 téléphone et t le temps qu'il leur faut pour l'assembler, la proportionnalité inverse est la suivante,
.
En convertissant la proportionnalité en une équation, on obtient ,
où k est la constante de proportionnalité.
On nous indique que 10 travailleurs ont mis 6 heures pour effectuer la tâche, ce qui donne : ,
Supposons qu'il ait fallu w travailleurs pour l'achever en 4 heures, d'où
En prenant le rapport des deux équations ci-dessus, k est éliminé et la seule inconnue reste w, nous avons
Par conséquent, il faudra 15 travailleurs pour assembler le téléphone en 4 heures.
Proportions directes et inverses - Principaux enseignements
Pour deux quantités quelconques, si elles sont liées l'une à l'autre de façon explicite, on dit qu'elles sont proportionnelles l'une à l'autre.
Les proportions directes et inverses sont deux types principaux de proportionnalités.
Deux quantités sont directement proportionnelles l'une à l'autre si et seulement si elles dépendent linéairement l'une de l'autre et que le rapport entre elles est une constante. La proportionnalité directe entre deux quantités ax et y est notée par .
Deux quantités sont inversement proportionnelles si et seulement si leur produit est toujours constant et que lorsque l'une augmente, l'autre diminue,. Leur proportionnalité inverse est notée par .
Apprends plus vite avec les 0 fiches sur Proportions directes et inverses
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Proportions directes et inverses
Qu'est-ce qu'une proportion directe ?
Une proportion directe est une relation où deux valeurs augmentent ou diminuent ensemble de manière constante.
Qu'est-ce qu'une proportion inverse ?
Une proportion inverse est une relation où une valeur augmente tandis que l'autre diminue de manière constante.
Comment identifier une proportion directe ou inverse ?
Pour une proportion directe, le rapport des valeurs est constant. Pour une proportion inverse, le produit des valeurs est constant.
Pourquoi les proportions sont-elles importantes en mathématiques ?
Les proportions permettent de résoudre des problèmes réels et de comprendre des relations entre différentes quantités de manière simple et précise.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.