Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy stored as glucose. Investigating photosynthesis helps us understand how organisms produce oxygen and food, supporting nearly all life on Earth.
Get started for freeContent creation by StudySmarter Biology Team.
Published: 24.06.2024. Last updated: 01.01.1970.
Il est possible de déduire diverses propriétés et valeurs des triangles à angle droit à l'aide des règles trigonométriques. Mais que se passe-t-il si nous avons affaire à des triangles qui n'ont pas d'angles droits ? Pouvons-nous quand même appliquer la trigonométrie pour trouver diverses propriétés des triangles donnés, comme les angles inconnus, les longueurs ou les surfaces ?
Les règles sur les trianglesa> dont il est question dans cet article permettront d'explorer cette question plus en détail :
La première règle du triangle dont nous allons parler s'appelle la règle du sinus. La règle du sinus peut être utilisée pour trouver les côtés ou les angles manquants dans un triangle.
Considère le triangle suivant dont les côtés sont a, b et c, et les angles, A, B et C.
Triangle avec les côtés a, b et c, et les angles, A, B et C, Nilabhro Datta - StudySmarter Originals
Il existe deux versions de la règle du sinus.
Pour le triangle ci-dessus, la première version de la règle du sinus stipule :
Cette version de la règle du sinus est généralement utilisée pour trouver la longueur d'un côté manquant.
La deuxième version de la règle du sinus est la suivante :
Cette version de la règle du sinus est généralement utilisée pour trouver un angle manquant.
Pour le triangle suivant, trouve un.
Selon la règle du sinus,
Lis les règles du sinus et du cosinus pour en savoir plus sur la règle du sinus.
Pour ce triangle, trouve x.
Selon la règle du sinus,
La deuxième règle du triangle dont nous allons parler s'appelle la règle du cosinus. La règle du cosinus peut être utilisée pour trouver les côtés ou les angles manquants dans un triangle.
Considère le triangle suivant dont les côtés sont a, b et c, et les angles, A, B et C.
Il existe deux versions de la règle du cosinus.
Pour le triangle ci-dessus, la première version de la règle du cosinus est la suivante :
a² = b² + c² - 2bc - cos (A)
Cette version de la règle du cosinus est généralement utilisée pour trouver la longueur d'un côté manquant lorsque tu connais les longueurs des deux autres côtés et l'angle qui les sépare.
La deuxième version de la règle du cosinus est la suivante :
Cette version de la règle du cosinus est généralement utilisée pour trouver un angle lorsque les longueurs des trois côtés sont connues.
Trouve x.
Selon la règle du cosinus,
a² = b² + c² - 2bc - cos (A)
=> x² = 5² + 8² - 2 x 5 x 8 x cos (30)
=> x² = 19.72
=> x = 4.44
Pour le triangle suivant, trouve l'angle A.
Selon la règle du cosinus,
Lis les règles du sinus et du cosinus pour en savoir plus sur la règle du cosinus.
Nous connaissons déjà la formule suivante :
Mais que se passe-t-il si nous ne connaissons pas la hauteur exacte du triangle ? Nous pouvons également déterminer la surface d'un triangle dont nous connaissons la longueur de deux côtés quelconques et l'angle qui les sépare.
Considère le triangle suivant :
La surface du triangle ci-dessus peut être trouvée en utilisant la formule :
Trouve la surface du triangle.
Clique sur Aire des triangles pour approfondir la règle de l'aire des triangles.
At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models' (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
StudySmarter is a global EdTech platform helping millions of students learn faster and succeed in exams like GCSE, A Level, SAT, ACT, and Abitur. Our expert-reviewed content, interactive flashcards, and AI-powered tools support learners across STEM, Social Sciences, Languages, and more.
Access subjects, mock exams, and features to revise more efficiently. All 100% free!
Get your free account!