Maintenant que nous savons ce que sont le changement d'élan et les collisions, nous pouvons commencer à les appliquer à des scénarios du monde réel. Ce ne serait pas une leçon sur les collisions sans accidents de voiture, n'est-ce pas ? Voyons comment le changement d'élan joue un rôle dans les collisions - tout d'abord, un exemple.
Jimmy vient d'obtenir son permis de conduire. Tout excité, il sort la toute nouvelle décapotable de son père pour un essai routier (mais avec Jimmy à l'intérieur, la décapotable fait \N(1,00 fois 10^3\N,\Nmathrm{kg}\N)). Voyageant à \N(18\N,\Nmathrm{\Nfrac{m}{s}\N), il heurte une boîte aux lettres stationnaire (évidemment) qui a une masse de \N(1,00\Nfois 10^2\N,\Nmathrm{kg}\N). Cela ne l'arrête pas beaucoup, cependant, et lui et la boîte aux lettres continuent ensemble à une vitesse de \(13.0\,\mathrm{\frac{m}{s}\\}\N-). Quelle est l'ampleur de l'impulsion du système voiture-Jimmy-boîte aux lettres au cours de la collision ?
Rappelle-toi que l'impulsion est la même chose que le changement de quantité de mouvement.
Rappelle que l'impulsion est la différence entre la quantité de mouvement initiale et la quantité de mouvement finale. Par conséquent, nous écrivons que
$$p_\text{i} = 1.00 fois 10^3\\Nmathrm{kg} \\N- fois 18\Nmathrm{\Nfrac{m}{s}\N+1.00\N- fois 10^2\Nmathrm{kg}\Nfois 0\Nmathrm{\Nfrac{m}{s}} = 18\N000\Nmathrm{\Nfrac{kg{m}{s}\N$$.
est égale à l'ampleur de notre élan initial, alors que
$$p_\text{f} = (1,00 fois 10^3\Nmathrm{kg}+1,00 fois 10^2\Nmathrm{kg}) fois 13,0\Nmathrm{\Nfrac{m}{s}\N = 14\Nmathrm{\Nfrac{kg{m}{s}\N$ = 14\N300\Nmathrm{\Nfrac{kg{m}{s}\N$$.
est égale à l'ampleur de notre élan final. En trouvant la différence entre les deux, on obtient
$$\Delta p = p_\text{f}-p_\text{i} = 14300\\Nmathrm{\frac{kg\Nm}{s}\N} - 18000\,\mathrm{\frac{kg\,m}{s}\\} =-3700\,\mathrm{\frac{kg\,m}{s}\\}\mathrm{.}$$
Par conséquent, l'impulsion du système voiture-boîte aux lettres a une magnitude de
$$J = 3700\,\mathrm{\frac{kg\,m}{s}\\}\mathrm{.}$$$
L'impulsion totale du système nous indique ce qui s'est passé entre Jimmy qui descendait la rue à toute vitesse à \N(18\N,\Mathrm{\frac{m}{s}\N\N) et la boîte aux lettres à \N(13.0\N,\Mathrm{\frac{m}{s}\N). Nous savons que l'élan total du système voiture-Jimmy-boîte aux lettres a changé de la façon suivante
$$3700\,\mathrm{\frac{kg\,m}{s}\\}\mathrm{.}$$
Nous avons maintenant toute l'histoire !
À l'heure actuelle, tu te demandes probablement comment cet exemple fonctionne. Plus haut, nous avons décrit les collisions inélastiques comme conservant l'élan, mais cet exemple semble montrer que l'élan total d'un système peut changer après une collision inélastique.
Cependant, il s'avère que la quantité de mouvement est toujours conservée dans le scénario ci-dessus. L'élan excédentaire a simplement été transféré à la Terre. Comme la boîte aux lettres était attachée à la surface de la Terre, le fait de la heurter a amené Jimmy à exercer une force sur la Terre. Pense à planter un crayon dans un ballon de soccer et à le frapper. Même si le crayon se détache du ballon, celui-ci ressent une force dans la direction de la pichenette.
Lorsque Jimmy a frappé la boîte aux lettres, cela équivalait à donner une pichenette à un tout petit "crayon", si tu veux, sur le gigantesque "ballon de foot" qu'est la Terre. Rappelle-toi qu'exercer une force sur un intervalle de temps équivaut à dire qu'il y a eu un changement d'élan. Par conséquent, en exerçant une force sur la Terre pendant un court laps de temps, une partie de l'élan du système a été transférée à la Terre. Ainsi, l'élan du système entier (y compris la Terre) a été conservé, mais les élans individuels de Jimmy, de la voiture et de la boîte aux lettres ont changé, tout comme leur élan commun.